Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Hannah Lennon

Hannah Lennon

Avatar for SAM Conference 2017

SAM Conference 2017

July 03, 2017
Tweet

More Decks by SAM Conference 2017

Other Decks in Research

Transcript

  1. Latent class trajectory modelling; The effect of misspecifying the random

    distribution assumptions on the derived latent class trajectories Dr Hannah Lennon, Dr Matthew Sperrin, Prof Andrew G Renehan 3rd July 2017 [email protected] @HannahLennon Statistical Analysis of Multi-Outcome Data (SAM) 2017
  2. Introduction to latent class linear mixed models • Finite mixture

    models • Latent classes derived depend on underlying assumptions • The GRoLTS Checklist: Guidelines for Reporting on Latent Trajectory Studies (van de Schoot et al., 2017) 1/14
  3. Structure of Talk Introduction to latent class linear mixed models

    Methods A simulation study under various variance-covariance matrix scenarios Simulation Study I Varying DGP (sample sizes and class proportions) under one model fit Simulation Study II Varying models: under one DGP Take Home Messages 3/14
  4. The latent class linear mixed model The model is an

    extension of the linear mixed model of Laird & Ware (1982) for individuals i = 1, . . . , N at times j = 1, . . . , T, for k = 1, . . . , K classes Yij|ci =k = Xi (tij )βk + Zik (tij )uik + wk (tij ) + εijk , (1) εij iid ∼ N(0, R). where both the fixed effects and the distribution of the random effects can be class-specific. 4/14
  5. The latent class linear mixed model The model is an

    extension of the linear mixed model of Laird & Ware (1982) for individuals i = 1, . . . , N at times j = 1, . . . , T, for k = 1, . . . , K classes Yij|ci =k = Xi (tij )βk + Zik (tij )uik + wk (tij ) + εijk , (1) εij iid ∼ N(0, R). where both the fixed effects and the distribution of the random effects can be class-specific. 4/14
  6. The latent class linear mixed model The model is an

    extension of the linear mixed model of Laird & Ware (1982) for individuals i = 1, . . . , N at times j = 1, . . . , T, for k = 1, . . . , K classes Yij|ci =k = Xi (tij )βk + Zik (tij )uik + wk (tij ) + εijk , (1) εij iid ∼ N(0, R). where both the fixed effects and the distribution of the random effects can be class-specific. 4/14
  7. The latent class linear mixed model The model is an

    extension of the linear mixed model of Laird & Ware (1982) for individuals i = 1, . . . , N at times j = 1, . . . , T, for k = 1, . . . , K classes Yij|ci =k = Xi (tij )βk + Zik (tij )uik + wk (tij ) + εijk , (1) εij iid ∼ N(0, R). where both the fixed effects and the distribution of the random effects can be class-specific. Each subject is allowed to vary about the mean trajectory of its class. 4/14
  8. The latent class linear mixed model The model is an

    extension of the linear mixed model of Laird & Ware (1982) for individuals i = 1, . . . , N at times j = 1, . . . , T, for k = 1, . . . , K classes Yij|ci =k = Xi (tij )βk + Zik (tij )uik + wk (tij ) + εijk , (1) εij iid ∼ N(0, R). where both the fixed effects and the distribution of the random effects can be class-specific. Each subject is allowed to vary about the mean trajectory of its class. We let the discrete random variable ci follow a multinomial logistic model according to covariates Xi , Pr(ci = k|Xi ) = exp(ξ0k + Xi ξk ) K l=1 exp(ξ0l + X i ξl ) . (2) 4/14
  9. Data Generating Scenarios/Models DGP R.Eff Assumption Varying Parameters A None

    σ2 B AR(1) autocorrelation ρ C Class-specific σ2 k D Class-specific AR(1) ρk , σ2 E Int Equal B ∈ R1×1 F Class-specific Bk G Slope Equal B ∈ R2×2 H Restricted B, ωk s.t K k=1 ωk = 1, I Class-specific Bk J Quadratic Equal B ∈ R3×3 K Restricted B, ωk s.t K k=1 ωk = 1, L Class-specific Bk , where k = 1, . . . , K. 5/14
  10. Example variance-covariance structures u ∼ N3 (0, B) where BL

    =    B1,1 B1,2 B1,3 B2,1 B2,2 B2,3 B3,1 B3,2 B3,3    simplfies to BA =    0 0 0 0 0 0 0 0 0    or BG =    B1,1 B1,2 0 B2,1 B2,2 0 0 0 0    . Additionally we can allow R =      σ2 1 0 0 0 0 σ2 2 0 0 0 0 σ2 3 0 0 0 0 σ2 4      . 6/14
  11. Simulation Parameters Fixed Parameters • 5 classes & Fixed effect

    parameters (Magnitude & shapes of classes) • 4 time points per individual • Residual variance σ2 = 0.5 • Number of Samples m = 1000 Simulation Parameters: Study I • Sample Size N = 100, N = 1000, N = 10 000 • Class Proportions • Equality (All 20%) • 2 similar majority groups (40%, 30%, 20%, 9%, 1%) • A clear majority group (60%, 20%, 15%, 4%, 1%) 7/14
  12. Simulation Parameters Fixed Parameters • 5 classes & Fixed effect

    parameters (Magnitude & shapes of classes) • 4 time points per individual • Residual variance σ2 = 0.5 • Number of Samples m = 1000 Simulation Parameters: Study II Fix • Sample Size N = 10000 • Class Proportions (60%, 20%, 15%, 4%, 1%) Vary • Fit Models A to Models L 7/14
  13. Study I Results: Estimated Proportions q q q q q

    Class1 Class3 Class5 0 20 40 60 80 q q q q q q q q q q q q q q q A majority group: 60, 20, 15, 4, 1 % q q q q q Class1 Class3 Class5 0 20 40 60 80 q q q q q q q q q q q q q q q 2 similar majority groups: 40, 30, 20, 9, 1 % q q q q q Class1 Class3 Class5 0 20 40 60 80 q q q q q q q q q q q q q q q Equal groups: all 20 % q q q q N = 100 N = 1 000 N =10 000 True % Classes ordered by decreasing size Class proportions (%) 8/14
  14. Study I Results: Estimated Proportions q q q q q

    Class1 Class3 Class5 0 20 40 60 80 q q q q q q q q q q q q q q q A majority group: 60, 20, 15, 4, 1 % q q q q q Class1 Class3 Class5 0 20 40 60 80 q q q q q q q q q q q q q q q 2 similar majority groups: 40, 30, 20, 9, 1 % q q q q q Class1 Class3 Class5 0 20 40 60 80 q q q q q q q q q q q q q q q Equal groups: all 20 % q q q q N = 100 N = 1 000 N =10 000 True % Classes ordered by decreasing size Class proportions (%) 8/14
  15. Study I Results: Estimated Proportions q q q q q

    Class1 Class3 Class5 0 20 40 60 80 q q q q q q q q q q q q q q q A majority group: 60, 20, 15, 4, 1 % q q q q q Class1 Class3 Class5 0 20 40 60 80 q q q q q q q q q q q q q q q 2 similar majority groups: 40, 30, 20, 9, 1 % q q q q q Class1 Class3 Class5 0 20 40 60 80 q q q q q q q q q q q q q q q Equal groups: all 20 % q q q q N = 100 N = 1 000 N =10 000 True % Classes ordered by decreasing size Class proportions (%) 8/14
  16. Study I Results: Mean bias of fixed effect estimates Table

    1: Notation: N1 denotes N = 100, N2 denotes N = 1, 000, N3 denotes N = 10, 000 while 0∗ denotes < 0.1. Proportions Equal Minority Majority ˆ β True N1 N2 N3 N1 N2 N3 N1 N2 N3 β01 20 1.5 0.4 1.3 0.2 0.4 1.1 5.8 6.1 3.1 β11 2 -0.3 0.2 0.9 0∗ 0.2 0.8 3.3 7.2 -1.0 β21 0 0.2 0.1 -0∗ 0.1 0.1 -0∗ -0.6 -1.7 0.5 β02 22 -4.1 -0.2 -0.3 -1.1 -0.1 -3.2 -0.2 -4.2 -0.3 β12 3 -4.3 2.3 2.4 -0.2 -6.0 -2.3 1.3 -4.1 -2.1 β22 0 1.3 -0.4 -0.5 0.5 2.0 0.9 -0.1 1.3 0.8 β03 26 -0.1 -1.3 -1.0 3.8 4.0 -1.4 -1.5 1.1 3.8 β13 10 -0.8 -0.8 -0.6 6.5 6.7 -0.7 -0.8 -1.9 5.3 β23 -2 0.3 0.2 0.1 -1.7 -1.8 0.1 0.1 0.5 -1.4 β04 26 -2.4 -0.8 -0.4 -1.3 -3.6 -0∗ -2.3 -3.0 -2.0 β14 0 3.2 0.4 0.2 0.7 3.2 0∗ 2.1 2.8 4.4 β24 1 -0.9 -0.2 -0.1 -0.2 -1.0 -0∗ -0.8 -0.8 -1.4 β05 26 -0.3 -3.5 -5.3 -3.7 -5.5 -0.3 -1.1 -0.7 -4.9 β15 6 -1.3 -6.4 -7.3 -7.3 -7.9 -0.9 -7.2 -5.6 -7.5 β25 -1 0.5 1.9 2.0 2.1 2.2 0.4 2.1 1.6 2.1 9/14
  17. Study I Results: Mean bias of fixed effect estimates Table

    1: Notation: N1 denotes N = 100, N2 denotes N = 1, 000, N3 denotes N = 10, 000 while 0∗ denotes < 0.1. Proportions Equal Minority Majority ˆ β True N1 N2 N3 N1 N2 N3 N1 N2 N3 β01 20 1.5 0.4 1.3 0.2 0.4 1.1 5.8 6.1 3.1 β11 2 -0.3 0.2 0.9 0∗ 0.2 0.8 3.3 7.2 -1.0 β21 0 0.2 0.1 -0∗ 0.1 0.1 -0∗ -0.6 -1.7 0.5 β02 22 -4.1 -0.2 -0.3 -1.1 -0.1 -3.2 -0.2 -4.2 -0.3 β12 3 -4.3 2.3 2.4 -0.2 -6.0 -2.3 1.3 -4.1 -2.1 β22 0 1.3 -0.4 -0.5 0.5 2.0 0.9 -0.1 1.3 0.8 β03 26 -0.1 -1.3 -1.0 3.8 4.0 -1.4 -1.5 1.1 3.8 β13 10 -0.8 -0.8 -0.6 6.5 6.7 -0.7 -0.8 -1.9 5.3 β23 -2 0.3 0.2 0.1 -1.7 -1.8 0.1 0.1 0.5 -1.4 β04 26 -2.4 -0.8 -0.4 -1.3 -3.6 -0∗ -2.3 -3.0 -2.0 β14 0 3.2 0.4 0.2 0.7 3.2 0∗ 2.1 2.8 4.4 β24 1 -0.9 -0.2 -0.1 -0.2 -1.0 -0∗ -0.8 -0.8 -1.4 β05 26 -0.3 -3.5 -5.3 -3.7 -5.5 -0.3 -1.1 -0.7 -4.9 β15 6 -1.3 -6.4 -7.3 -7.3 -7.9 -0.9 -7.2 -5.6 -7.5 β25 -1 0.5 1.9 2.0 2.1 2.2 0.4 2.1 1.6 2.1 9/14
  18. Study I Results: Mean bias of fixed effect estimates Table

    1: Notation: N1 denotes N = 100, N2 denotes N = 1, 000, N3 denotes N = 10, 000 while 0∗ denotes < 0.1. Proportions Equal Minority Majority ˆ β True N1 N2 N3 N1 N2 N3 N1 N2 N3 β01 20 1.5 0.4 1.3 0.2 0.4 1.1 5.8 6.1 3.1 β11 2 -0.3 0.2 0.9 0∗ 0.2 0.8 3.3 7.2 -1.0 β21 0 0.2 0.1 -0∗ 0.1 0.1 -0∗ -0.6 -1.7 0.5 β02 22 -4.1 -0.2 -0.3 -1.1 -0.1 -3.2 -0.2 -4.2 -0.3 β12 3 -4.3 2.3 2.4 -0.2 -6.0 -2.3 1.3 -4.1 -2.1 β22 0 1.3 -0.4 -0.5 0.5 2.0 0.9 -0.1 1.3 0.8 β03 26 -0.1 -1.3 -1.0 3.8 4.0 -1.4 -1.5 1.1 3.8 β13 10 -0.8 -0.8 -0.6 6.5 6.7 -0.7 -0.8 -1.9 5.3 β23 -2 0.3 0.2 0.1 -1.7 -1.8 0.1 0.1 0.5 -1.4 β04 26 -2.4 -0.8 -0.4 -1.3 -3.6 -0∗ -2.3 -3.0 -2.0 β14 0 3.2 0.4 0.2 0.7 3.2 0∗ 2.1 2.8 4.4 β24 1 -0.9 -0.2 -0.1 -0.2 -1.0 -0∗ -0.8 -0.8 -1.4 β05 26 -0.3 -3.5 -5.3 -3.7 -5.5 -0.3 -1.1 -0.7 -4.9 β15 6 -1.3 -6.4 -7.3 -7.3 -7.9 -0.9 -7.2 -5.6 -7.5 β25 -1 0.5 1.9 2.0 2.1 2.2 0.4 2.1 1.6 2.1 9/14
  19. Results: Mean BIC For N = 10, 000 with a

    majority proportion, fixed to five classes, and data generated from scenario J. The squares denote non-convergence of the models. Model Dof 20 22 24 26 21 25 23 27 35 26 30 160 180 200 220 240 A B C D E F G H I J K BIC, in thousands 10/14
  20. Results: Mean bias for Models A to K (Simulated under

    J) β True Model A B C E G H J K β01 22 -1.4 1.6 -1.3 1.5 0.2 -0.8 3.6 -1.4 β11 3 -0.2 3.5 -0.0 3.3 -1.5 -0.9 -1.2 -0.9 β21 0 -0.4 -1.1 -0.2 -1.0 0.9 0.5 0.6 0.3 β02 26 -3.1 -4.1 -2.4 -4.8 -5.2 -5.6 0.5 -0.1 β12 10 -4.6 -5.5 -5.5 -6.5 -7.8 -7.7 1.5 -0.9 β22 -2 1.2 1.2 1.9 1.4 2.1 1.8 -0.4 0.3 β03 26 -3.7 -3.5 -3.0 -4.1 0.1 0.0 -5.2 -3.9 β13 0 4.2 2.2 3.0 3.8 9.8 9.7 2.0 2.8 β23 1 -1.4 -0.2 -1.0 -1.3 -2.9 -2.8 -0.4 -0.9 β04 20 2.3 1.7 0.7 2.0 0.6 0.5 -3.2 0.8 β14 2 1.8 1.4 0.7 1.4 0.5 0.4 -4.8 0.1 β24 0 -0.1 -0.2 -0.4 -0.0 -0.4 -0.2 1.3 0.1 β05 26 -2.0 -4.2 -5.2 -3.6 -4.7 -3.4 -1.0 -1.1 β15 6 -2.1 -3.0 -3.1 -4.0 -4.1 -4.5 -1.9 -4.4 β25 -1 1.4 1.2 0.5 2.0 1.6 2.1 0.8 1.5 11/14
  21. Mean standardised bias for Models A to K (DGP is

    J) β True Model A B C E G H J K β01 22 -95 59 -123 58 24 -153 22 -118 β11 3 -11 92 -4 86 -416 -162 46 -184 β21 0 -91 -118 -82 -101 202 203 -52 82 β02 26 -115 -156 -162 -223 -952 -2755 -117 -7 β12 10 -121 -159 -306 -229 -2017 -12178 -132 -36 β22 -2 115 155 506 217 727 765 145 51 β03 26 -162 -389 -252 -192 406 2 -751 -192 β13 0 122 125 200 124 72365 1311 276 144 β23 1 -132 -27 -346 -156 -21125 -1938 -103 -157 β04 20 110 89 68 120 214 70 123 41 β14 2 57 54 98 59 262 49 -123 6 β24 0 -13 -22 -159 -4 -139 -75 138 14 β05 26 -355 -283 -430 -2149 -870 -650 -59 -66 β15 6 -193 -140 -264 -2249 -1885 -765 -45 -239 β25 -1 358 168 155 1413 715 755 65 261 12/14
  22. Take Home Messages • Latent class linear mixed models can

    be used to simplify complex longitudinal data into relatively homogeneous sub-populations • Easy to implement in many software packages (R, Stata, SAS, MPlus, LatentGold, etc) and becoming more popular in epidemiology studies 13/14
  23. Take Home Messages • Latent class linear mixed models can

    be used to simplify complex longitudinal data into relatively homogeneous sub-populations • Easy to implement in many software packages (R, Stata, SAS, MPlus, LatentGold, etc) and becoming more popular in epidemiology studies • However, the class proportions can be underestimated, affecting the fixed effect estimates and hence the magnitude and size of the trajectories recovered. • The GRoLTS Checklist (2017) can be used to improve reporting standards. • Let’s look deeper into the SEM literature which has already studied many of the emerging questions from epidemiological studies. 13/14