Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Helene Jacqmin-Gadda

Helene Jacqmin-Gadda

Avatar for SAM Conference 2017

SAM Conference 2017

July 04, 2017
Tweet

More Decks by SAM Conference 2017

Other Decks in Research

Transcript

  1. Quantile regression for incomplete longitudinal data with follow-up truncated by

    death Hélène Jacqmin-Gadda, Anaïs Rouanet, Viviane Philipps, Marion Medeville Inserm Research Center Bordeaux Population Health, Biostatistics team SAM Conference July 2017 - Liverpool
  2. Introduction WIEE for quantile regression weights computation Application Conclusion Quantile

    regressions Qτ (Y |X) = X βτ Possible τ values : 0.05, 0.10, 0.25, 0.50, .... Factors associated with change in population quantiles Avoid distribution assumption (no Gaussian assumption) Characterize the entire distribution by modelling several quantiles (= mean regression) → Useful for estimating cognitive norms in the elderly Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 2 / 16
  3. Introduction WIEE for quantile regression weights computation Application Conclusion Estimating

    cognitive norms from elderly cohorts Estimation method should account for : Correlation among repeated measures Follow-up truncated by death Dropout Intermittent missing data Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 3 / 16
  4. Introduction WIEE for quantile regression weights computation Application Conclusion Objective

    & outline Objective : Propose a weighted estimating equation approach to estimate quantile regression using incomplete longitudinal data due to death, dropout and intermittent missing data. Outline : Weighted IEE for quantile regression Weight computation given type of missing data Application for cognitive norm estimation in the Paquid cohort Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 4 / 16
  5. Introduction WIEE for quantile regression weights computation Application Conclusion Notations

    Yij cognitive test for subject i, i = 1, ..., N, at visit j, j = 1, ..., ni < J Xij explanatory variable for i at visit j (fixed or known at all visits) Qτ (Yij |Xij ) = Xij βτ Ti time of death Rij = 1 if Yij observed, Rij = 0 if Yij missing HY ij measures of Y for subject i before visit j ˜ Yi complete trajectory of Y including unobserved values Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 5 / 16
  6. Introduction WIEE for quantile regression weights computation Application Conclusion Missingness

    mechanisms with death P(Rij = 1 | Ti > tij , Xi , ˜ Yi , Ti ) = P(Rij = 1|Ti > tij , Xij ) MCAR = P(Rij = 1|Ti > tij , Xij , HY ij ) MAR = P(Rij = 1|Ti > tij , Xij , HY ij , Ti ) MAR − S (Kurland and Heagerty, 2005) In the following, we assume P(Ri1 = 1) = 1 Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 6 / 16
  7. Introduction WIEE for quantile regression weights computation Application Conclusion WIEE

    for incomplete longitudinal data U(ˆ βτ ) = N i=1 ni j=1 1 πij Xij τ − 1(Yij − Xij ˆ βτ < 0) = 0 and πij = P(Rij = 1|Ti > tij , Xij , HY ij ) (or stabilized weights) Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 7 / 16
  8. Introduction WIEE for quantile regression weights computation Application Conclusion WIEE

    for incomplete longitudinal data U(ˆ βτ ) = N i=1 ni j=1 1 πij Xij τ − 1(Yij − Xij ˆ βτ < 0) = 0 and πij = P(Rij = 1|Ti > tij , Xij , HY ij ) (or stabilized weights) Estimated with R package quantreg with the "weights" option Variance estimated by bootstrapping subjects (Yi , Xi ) −→ WIEE estimates change in the population quantiles among subjects currently alive Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 7 / 16
  9. Introduction WIEE for quantile regression weights computation Application Conclusion Weights

    computation for monotone MAR-S data πij = P(Rij = 1|Ti > tij , Xij , HY ij ) = j k=2 P(Rik = 1|Rik−1 = 1, Ti > tij , Xij , HY ij ) = j k=2 P(Rik = 1|Rik−1 = 1, Ti > tij , Xik, Yik−1) = j k=2 λijk Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 8 / 16
  10. Introduction WIEE for quantile regression weights computation Application Conclusion Weights

    computation for monotone MAR-S data πij = P(Rij = 1|Ti > tij , Xij , HY ij ) = j k=2 P(Rik = 1|Rik−1 = 1, Ti > tij , Xij , HY ij ) = j k=2 P(Rik = 1|Rik−1 = 1, Ti > tij , Xik, Yik−1) = j k=2 λijk Dropout model under MAR-S : logit (λijk) = γ0k(j−k) + γ1(j−k) Xik + γ2(j−k) Yik−1 Estimated for each interval j − k ≥ 0 by pooling samples of subjects alive at visit j and observed at visit k − 1 for k = 2, J. Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 8 / 16
  11. Introduction WIEE for quantile regression weights computation Application Conclusion Weights

    computation for monotone MAR data πij = j k=2 P(Rik = 1|Rik−1 = 1, Ti > tij , Xij , HY ij ) = j k=2 P(Rik = 1|Rik−1 = 1, Ti > tik, Xik, Yik−1) = j k=2 λik Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 9 / 16
  12. Introduction WIEE for quantile regression weights computation Application Conclusion Weights

    computation for monotone MAR data πij = j k=2 P(Rik = 1|Rik−1 = 1, Ti > tij , Xij , HY ij ) = j k=2 P(Rik = 1|Rik−1 = 1, Ti > tik, Xik, Yik−1) = j k=2 λik Dropout model under MAR : logit (λik) = γ0k + γ1Xik + γ2Yik−1 Estimated by a unique regression pooling samples of subjects alive at visit k = 2, ..., J and observed at visit k − 1. (Dufouil et al, 2004) Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 9 / 16
  13. Introduction WIEE for quantile regression weights computation Application Conclusion Weights

    computation for intermittent MAR data HR ij = (Ri1, ..., Rij−1) and ηij = P(Rij = 1|Ti > tij , HR ij , Xij , HY ij ) πij = P(Rij = 1|Ti > tij , Xij , HY ij ) = HR ij ηij j−1 k=2 ηrik ik (1 − ηik)(1−rik ) Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 10 / 16
  14. Introduction WIEE for quantile regression weights computation Application Conclusion Weights

    computation for intermittent MAR data HR ij = (Ri1, ..., Rij−1) and ηij = P(Rij = 1|Ti > tij , HR ij , Xij , HY ij ) πij = P(Rij = 1|Ti > tij , Xij , HY ij ) = HR ij ηij j−1 k=2 ηrik ik (1 − ηik)(1−rik ) Intermittent missingness model under MAR : logit(ηij ) = γ0j + γ1Xij + γ2(1 − Rij−1) + γ3Y ∗ ij−1 with Y ∗ ij−1 = Yij−1 if Rij−1 = 1 and Y ∗ ij−1 = µ if Rij−1 = 0. Estimated by pooling samples of subjects alive at visit j = 2, ..., J (whatever the observation pattern). Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 10 / 16
  15. Introduction WIEE for quantile regression weights computation Application Conclusion Application

    to gender difference in cognitive decline Paquid cohort : 3421 subjects followed every 2/3 years during 25 years Y : Isaacs test of verbal fluency (score at 60sec, ceiling effect) X : gender, education (CEP) and age (for Y and missingess model) Sample A : include all measurements (med :3, IQR=2-6) Sample B : follow-up truncated at the first missing value (med :1, IQR=1-4, 2516 dropouts, 819 deaths before dropout) Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 11 / 16
  16. Introduction WIEE for quantile regression weights computation Application Conclusion Estimates

    for sample B (monotone) : MCAR, MAR & MAR-S Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 12 / 16
  17. Introduction WIEE for quantile regression weights computation Application Conclusion Estimates

    for sample A & B : MCAR & MAR Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 13 / 16
  18. Introduction WIEE for quantile regression weights computation Application Conclusion Estimates

    for sample A under MCAR & MAR τ=0.10 τ=0.50 IEE ˆ β se p value ˆ β se p value Intercept 36.02 0.88 <0.0001 39.50 0.25 <0.0001 age65 -0.71 0.86 0.406 -0.55 0.25 0.027 age652 -1.86 0.22 <0.0001 -0.32 0.06 <0.0001 Education 4.05 0.85 <0.0001 0.30 0.25 0.219 Male -2.25 0.31 <0.0001 0.15 0.05 0.001 Baseline visit -1.87 0.17 <0.0001 -0.03 0.008 <0.0001 age65 :Educ 0.58 0.63 0.354 1.11 0.22 <0.0001 age65 :Male 1.34 0.38 0.0003 -0.27 0.09 0.002 WIEE (MAR) ˆ β se p value ˆ β se p value Intercept 33.86 1.15 <0.0001 39.35 0.24 <0.0001 age65 1.52 1.51 0.323 -0.30 0.32 0.336 age652 -2.82 0.53 <0.0001 -0.56 0.09 <0.0001 Education 6.20 1.09 <0.0001 0.36 0.23 0.112 Male -2.41 0.63 0.0003 0.11 0.08 0.149 Baseline visit -1.06 0.24 <0.0001 -0.04 0.012 0.0006 age65 :Educ -1.28 0.94 0.173 1.18 0.23 <0.0001 age65 :Male 1.76 0.78 0.02 -0.23 0.12 0.05 Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 14 / 16
  19. Introduction WIEE for quantile regression weights computation Application Conclusion Conclusion

    Make possible to estimate quantile accounting for death, dropout and intermittent missingness Little difference between estimates under MAR and MAR-S Censoring at first intermittent missing data has more impact WIEE with the same weights available for standard regression R functions available soon Hélène Jacqmin-Gadda SAM 2017, Liverpool July 4th 2017 15 / 16
  20. Chen, B., Yi, G. Y., and Cook, R. J. (2010).

    Weighted generalized estimating functions for longitudinal response and covariate data that are missing at random. Journal of the American Statistical Association, 105(489), 336-353. Dufouil, D., Brayne, C. and Clayton, D. (2004). Analysis of longitudinal studies with death and drop-out : a case study. Statistics in Medicine 23, 2215-2226. Jung, S. H. (1996). Quasi-likelihood for median regression models. Journal of the American Statistical Association, 91(433), 251-257 R. Koenker (2005). Quantile Regression. Cambridge U. Press. Kurland, B. F. and Heagerty, P. J. (2005). Directly parameterized regression conditioning on being alive : analysis of longitudinal data truncated by deaths. Biostatistics, 6(2), 241-258. Lipsitz, S. R., Fitzmaurice, G. M., Molenberghs, G., and Zhao, L. P. (1997). Quantile regression methods for longitudinal data with dropouts : application to CD4 cell counts of patients infected with the human immunodeficiency virus. Journal of the Royal Statistical Society C , 46(4), 463-476.