Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
編入試験への準備と編入後の生活 (Ver.2018)
Search
S.Shota
March 17, 2018
Education
0
810
編入試験への準備と編入後の生活 (Ver.2018)
第6回関東合同編入説明会 (
https://www.zenpen-kosen.com/kantou_6/
) のフリートークで使用したスライドです
S.Shota
March 17, 2018
Tweet
Share
More Decks by S.Shota
See All by S.Shota
[ICLR/ICML2019読み会] Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search
satuma777
2
3.3k
論文紹介:Neural Architecture Search with Bayesian Optimisation and Optimal Transport [Kandasamy et al., NIPS 2018]
satuma777
0
1.1k
Path-Level Network Transformation for Efficient Architecture Search (ICML2018読み会)
satuma777
5
1.3k
論文紹介:Efficient Architecture Search by Network Transformation [Cai et al., AAAI-2018]
satuma777
0
1.1k
新ラボ生向けチュートリアル:文献調査(サーベイ)の仕方
satuma777
0
1.2k
The beautiful world of evolutionary computation made by probability and statistics
satuma777
0
1.2k
論文紹介:Gradient Boosted Feature Selection
satuma777
0
1.1k
論文紹介:Neural Architecture Search with Reinforcement Learning
satuma777
0
1.7k
論文紹介:Speeding up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves
satuma777
0
1.2k
Other Decks in Education
See All in Education
Web Architectures - Lecture 2 - Web Technologies (1019888BNR)
signer
PRO
0
3.3k
あなたの言葉に力を与える、演繹的なアプローチ
logica0419
1
250
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
13
6.8k
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
150
いわゆる「ふつう」のキャリアを歩んだ人の割合(若者向け)
hysmrk
0
290
Human Perception and Cognition - Lecture 4 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
IHLヘルスケアリーダーシップ研究会17期説明資料
ihlhealthcareleadership
0
400
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
210
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
3.1k
心理学を学び活用することで偉大なスクラムマスターを目指す − 大学とコミュニティを組み合わせた学びの循環 / Becoming a great Scrum Master by learning and using psychology
psj59129
1
610
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Into the Great Unknown - MozCon
thekraken
40
2.2k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
How STYLIGHT went responsive
nonsquared
100
6k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
120
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
47k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
420
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
250
Producing Creativity
orderedlist
PRO
348
40k
Transcript
ୈճؔ౦߹ಉฤೖઆ໌ձ!ίϩϓϥ ฤೖࢼݧͷ४උͱ ฤೖޙͷੜ׆ ੪౻ ᠳଡ ڥใֶ ใϝσΟΞڥֶઐ߈ ใϝσΟΞֶίʔε നݚڀࣨ म࢜
݄
"CPVU.F • ੪౻ ᠳଡ αΠτ γϣλ • BLBͭ͞·
TBUVNB • ɿ!EBZUC@UXZ • ɿTBUVNB • ϙʔτϑΥϦΦɾϒϩάɿ • IUUQTBUVNBQPSUGPMJPYZ[BCPVU • IUUQTBUVNBQPSUGPMJPIBUFCMPKQ
"CPVU.FɿֶྺαϚϦʔ • ɿἚߴઐ ిࢠใֶՊ ଔۀ • Ṳནঘݚڀࣨ ग़ɼଔݚςʔϚ"3 •
ɿԣࠃཱେֶ ཧֶ෦ ɾిࢠใܥֶՊ ใֶ&1ଔۀ • ݱࡏɿԣࠃཱେֶ ڥใֶ ใ ϝσΟΞڥֶઐ߈ ใϝσΟΞֶίʔε • നਅҰݚڀࣨ ॴଐɼݚڀςʔϚػցֶश
େֶબͼͷج४ • ୈҰʹ༏ઌ͖͢ʮݚڀࣨʯ • ͕ࣗΓ͍ͨݚڀԿʁ • ͦͷςʔϚʹ߹க͢Δݚڀࣨଘࡏ͢Δʁ • ࣌ؒతɾڑతɾۚમతʹ༨༟͕͋Ε
ݚڀࣨݟֶͷ͓ئ͍Λ͠Α͏ • େͷ1* 1SJODJQBM*OWFTUJHBUPSݚڀࣨओ࠻ շ͘ड͚ೖΕͯ͘ΕΔͣ • ΑΓςʔϚʹ߹கͨ͠ଞͷઌੜΛ հͯ͘͠ΕΔέʔε
ฤೖࢼݧͷରࡦ • ใֶ&1ͷ߹ɼࢼݧՊͭ • ֶʢඍੵɾઢܗʣɼཧʢྗֶʣɼ ઐՊʢཧճ࿏ $ݴޠ +BWBʣ •
ӳޠ50&*$ͷείΞΛఏग़ • աڈˠॻ੶ˠաڈͷॱʹऔΓΉ • աڈʮͷΈʯͨΓతͰඇৗʹةݥ • ͓͢͢Ίͷॻ੶ͪ͜Βʹ ·ͱΊ·ͨ͠ˠ https://www.slideshare.net/ShotaSatuma/ss-66615294
୯Ґৼସʹ͍ͭͯ • ిࢠใܥˠใܥͷΑ͏ʹҟͳΔઐ߈ʹ ҠΔͱৼସՄೳͳ୯Ґগͳ͘ͳΔ • ࢲͷ߹ɿߴઐࣗମʹऔಘͨ͠ిؾܥՊͷ ୯Ґ΄ͱΜͲৼସઌͳ͠ • Պམͱͨ͠Βཹͱ͍͏ͱ͜Ζ͔Β
ελʔτͱ͍͏έʔεʜ • ෦ੜΑΓ୯Ґ͕গͳΊͳͷͰɼ ߴઐ࣌ΑΓؤுΔඞཁ͋Γ
େֶͷߨٛ • ҰൠڭཆՊ͕໘ന͍ • ϕϯνϟʔ͔ΒֶͿϚωδϝϯτͳͲ • ઐجૅՊɿֶɾཧɾԽֶͷجૅ • ઢܗɼྗֶɼࡐྉ༗ػԽֶʜ
• ใֶ&1ͷઐՊ෯͍ • σʔλϕʔεɼใηΩϡϦςΟɼػցֶशɼ ܭࢉཧɼใࣾձྙཧɼཧݴޠֶʜ
ฤೖ͔Βͷڭһ໔ڐऔಘ • ใֶ&1ͰऔಘՄೳͳڭһ໔ڐɿ • தֶߍڭ་Ұछ໔ڐঢ়ʢֶɾཧՊʣ • ߴֶߍڭ་Ұछ໔ڐঢ়ʢֶɾཧՊɾใʣ • தֶߍ
ֶ ͱߴߍ ֶɾใ Λऔಘ • ͜ͷέʔεͰଔۀཁ݅୯Ґʴ୯Ґ • ҆қʹऔΖ͏ͱ͢Δͷ ͓͢͢Ί͠·ͤΜʜ
ฤೖ͔Βͷڭһ໔ڐऔಘ • ՃͰऔΔඞཁ͕͋ͬͨ୯Ґɿ • ڭ৬ؔ࿈ • ڭҭ৺ཧֶɼڭՊڭҭ๏ɼಓಙڭҭͳͲ • ڭՊؔ࿈
• ֶɼزԿֶɼใॲཧͳͲ • िؒͷհޢࢱࢪઃͰͷ࣮श • िؒͷڭҭ࣮श • ߴߍ໔ڐͳΒिؒɼதֶ໔ڐͳΒिؒ
εέδϡʔϧʢલظʣ ̍ݶ ̎ݶ ̏ݶ ̐ݶ ̑ݶ ̒ݶ ̓ݶ ʙ
ʙ ʙ ʙ ʙ ʙ ʙ ݄ ཧ ݴޠֶ" ใཧ ຊࠃ ݑ๏ ౷ܭֶ *$ Ր ιϑτΣΞ ֶ ϓϩδΣΫτ ϥʔχϯά ΞϧόΠτ ਫ ࡐྉ ༗ػԽֶ ཧɾԽֶ࣮ݧ ίϯύΠϥ ใ ηΩϡϦςΟ زԿֶ* ڭҭ૬ஊͷ جૅͱํ๏ ۚ ϚϧνϝσΟΞ ใॲཧ ใֶ ֓ தࠃޠ B ूதߨٛʢલظʣ ใՊڭҭ๏** தֶՊڭҭ๏** ڭ৬ ɿ௨ৗͷଔۀཁ݅ʹؔΘΔߨٛ ɿڭһ໔ڐऔಘʹؔΘΔߨٛ
εέδϡʔϧʢޙظʣ ̍ݶ ̎ݶ ̏ݶ ̐ݶ ̑ݶ ̒ݶ ̓ݶ ʙ
ʙ ʙ ʙ ʙ ʙ ʙ ݄ ڭҭͷ ৺ཧֶ σΟδλϧɾ ίϛϡχέʔγϣϯ ݱ࣏ ʢຊʣ ίϯϐϡʔλ γεςϜͱ ίϛϡχέʔ γϣϯ ౷ܭֶ **$ ΧϦΩϡϥϜ Ր ใࣾձ ྙཧ ը૾ɾԻ ใॲཧ தֶՊ ڭҭ๏* ϕϯνϟʔ͔Β ֶͿϚωδϝϯτ ڭҭ جૅ ਫ ࡐྉ ༗ػԽֶ ྗֶ ใֶ ಛผԋश ΞϧόΠτ ઢܗ ֶ** σʔλϕʔε ଟ༷ମ ಓಙڭҭͷ ཧͱํ๏ ۚ ࡐྉ ແػԽֶ ݱͷ ܦࡁ# ֬ Ϟσϧ தࠃޠ B ΞϧόΠτ ूதߨٛʢޙظʣ ڭҭํ๏ ɿ௨ৗͷଔۀཁ݅ʹؔΘΔߨٛ ɿڭһ໔ڐऔಘʹؔΘΔߨٛ
εέδϡʔϧʢલظʣ ̍ݶ ̎ݶ ̏ݶ ̐ݶ ̑ݶ ̒ݶ ̓ݶ ʙ
ʙ ʙ ʙ ʙ ʙ ʙ ݄ ڭҭܦӦ ΞϧόΠτ Ր ྠߨ ۀܦӦ ਫ ܭࢉཧ** ྠߨ తࡒ࢈ ΞϧόΠτ ۚ ྠߨ ֶ* ઌిࢠ ใֶ ࣭ཧ ूதߨٛʢલظʣ ڭҭࣾձֶ ੜెɾਐ࿏ࢦಋ ڭҭ࣮शࣄલࢦಋ ɿ௨ৗͷଔۀཁ݅ʹؔΘΔߨٛ ɿڭһ໔ڐऔಘʹؔΘΔߨٛ
εέδϡʔϧʢޙظʣ ̍ݶ ̎ݶ ̏ݶ ̐ݶ ̑ݶ ̒ݶ ̓ݶ ʙ
ʙ ʙ ʙ ʙ ʙ ʙ ݄ ྠߨ Ր ྠߨ ਫ ΞϧόΠτ ΞϧόΠτ ۚ ྠߨ ֬ɾ ౷ܭ ಛผ ׆ಈ ڭ৬࣮ઓ ԋश ूதߨٛʢޙظʣ ڭҭ࣮शࣄޙࢦಋ ڭҭ࣮श"ɾ# հޢࢱ࣮श ɿ௨ৗͷଔۀཁ݅ʹؔΘΔߨٛ ɿڭһ໔ڐऔಘʹؔΘΔߨٛ
ʑͷੜ׆ • ΞϧόΠτˍΠϯλʔϯγοϓ • क़ߨࢣͷΞϧόΠτʢिʙʣ • 8FCΤϯδχΞظΠϯλʔϯʢिʣ • ༡Ϳ༨༟࡞ΕΔ
• Πϕϯτ͍͍ͩͨͳͷͰʜ • ूதߨٛΛ͏·͘ආ͚ͯ ՆϑΣεߦͬͨΓʜ
େֶӃʹ͍ͭͯ • ฤೖੜͰਪનऔΕΔ • ڥใֶͷ߹ʮ্ҐʯPS ʮҎ্Ͱऔಘͨ͠୯Ґ͕Ҏ্ʯ • ߴઐ࣌ͷؔ͠ͳ͍ •
ߴઐ࣌ͷ୯Ґऔಘ࣌ͷʹؔͳ͘ ʮৼସ୯ҐʯͱΈͳ͞ΕΔͨΊ • Ӄਐ͔ब৬͔͙͢ʹબ͕ഭΒΕΔͷͰ େֶೖֶޙ͔Βߟ͑࢝ΊΔͷ͕͓͢͢Ί
࠷ޙʹɿฤೖͷ1304ʗ$0/4 • ฤೖͷ͍͍ͱ͜Ζʢ1304ʣ • ෯͍ڭཆɾઐՊΛਂΊΔ͜ͱ͕Մೳ • ىۀΛ͡Ίͱͯ͠νϟϯεࢸΔॴʹ • ฤೖͷѱ͍ͱ͜Ζʢ$0/4ʣ
• ߴઐ࣌ʹशͬͨ͜ͱΛ࠶श͏͜ͱʜ • ཹͷϦεΫߴΊ ʮେֶʯΛ͍ͤΔ͔ ࣗͷ৺͕͚࣍ୈ