Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Knowledge Distillation for BERT
Search
Scatter Lab Inc.
April 17, 2020
Research
0
2.3k
Knowledge Distillation for BERT
Scatter Lab Inc.
April 17, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.8k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4.2k
Adversarial Filters of Dataset Biases
scatterlab
0
2.3k
Sparse, Dense, and Attentional Representations for Text Retrieval
scatterlab
0
2.3k
Weight Poisoning Attacks on Pre-trained Models
scatterlab
0
2.2k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.5k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
Open-Retrieval Conversational Question Answering
scatterlab
0
2.3k
What Can Neural Networks Reason About?
scatterlab
0
2.3k
Other Decks in Research
See All in Research
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
690
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
160
CVPR2025論文紹介:Unboxed
murakawatakuya
0
210
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
12
2k
Remote sensing × Multi-modal meta survey
satai
4
590
超高速データサイエンス
matsui_528
1
220
財務諸表監査のための逐次検定
masakat0
0
200
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
770
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.1k
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
190
CoRL2025速報
rpc
2
3.2k
投資戦略202508
pw
0
570
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
59
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Thoughts on Productivity
jonyablonski
73
4.9k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Rails Girls Zürich Keynote
gr2m
95
14k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Scaling GitHub
holman
464
140k
Transcript
,OPXMFEHF%JTUJMMBUJPOGPS#&35 .BDIJOF-FBSOJOH4PGUXBSF&OHJOFFS
ݾର ݾର 1BUJFOU,OPXMFEHF%JTUJMMBUJPOGPS#&35.PEFM$PNQSFTTJPO %JTUJM#&35 BEJTUJMMFEWFSTJPOPG#&35TNBMMFS GBTUFS DIFBQFSBOEMJHIUFS
'BTU#&35B4FMGEJTUJMMJOH#&35XJUI"EBQUJWF*OGFSFODF5JNF %ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI
1BUJFOU,OPXMFEHF%JTUJMMBUJPO GPS#&35.PEFM$PNQSFTTJPO 1BUJFOU,OPXMFEHF%JTUJMMBUJPOGPS#&35.PEFM$PNQSFTTJPO
• &./-1"DDFQUFE • .JDSPTPGU%ZOBNJDT"*3FTFBSDI • ୭ୡ#&35୷दب • ӝઓ,OPXMFEHF%JTUJMMBUJPOҗܰѱ1BUJFOUܳਊೣ • 4PGU5BSHFU݅ਊೞঋҊܲۨযীࢲبणೞب۾ೣ
1BUJFOU,OPXMFEHF%JTUJMMBUJPOGPS#&35.PEFM$PNQSFTTJPO 1,%GPS#FSU.PEFM$PNQSFTTJPO
1BUJFOU,OPXMFEHF%JTUJMMBUJPOGPS#&35.PEFM$PNQSFTTJPO णۚ • ࣁоMPTTܳઙೣ • )BSEUBSHFUীೠ$SPTT&OUSPQZ-PTT • 4PGU5BSHFU 5FBDIFSNPEFMPVUQVU ীೠ$SPTT
&OUSPQZ-PTT • рۨযٜ<$-4>షSFQSFTFOBUJPOٜীೠ OPSNBMJ[FE.FBO4RVBSFE-PTT
ण٣పੌ 1BUJFOU,OPXMFEHF%JTUJMMBUJPOGPS#&35.PEFM$PNQSFTTJPO • 4UVEFOU7BSJBUJPO#&35@ #&35@ • #&35@ CBTF ীࢲLѐۨয۽4UVEFOUܳୡӝച •
1,%4LJQFWFSZLMBZFSীࢲण • 1,%-BTUMBTULMBZFSীࢲण
Ѿҗ 1BUJFOU,OPXMFEHF%JTUJMMBUJPOGPS#&35.PEFM$PNQSFTTJPO ؘఠ݆ਸٸੜؽ
Ѿҗ 1BUJFOU,OPXMFEHF%JTUJMMBUJPOGPS#&35.PEFM$PNQSFTTJPO
Ѿҗ 1BUJFOU,OPXMFEHF%JTUJMMBUJPOGPS#&35.PEFM$PNQSFTTJPO
%JTUJM#&35 BEJTUJMMFEWFSTJPOPG#&35 TNBMMFS GBTUFS DIFBQFSBOEMJHIUFS %JTUJM#&35 BEJTUJMMFEWFSTJPOPG#&35TNBMMFS GBTUFS DIFBQFSBOEMJHIUFS
• /FVS*14"DDFQUFE • )VHHJOHGBDF • 4UVEFOUݽ؛ীࢲUPLFOUZQFFNCFEEJOHT QPPMFSMBZFSઁ %JTUJM#&35 BEJTUJMMFEWFSTJPOPG#&35TNBMMFS GBTUFS
DIFBQFSBOEMJHIUFS %JTUJM#&35
%JTUJM#&35 BEJTUJMMFEWFSTJPOPG#&35TNBMMFS GBTUFS DIFBQFSBOEMJHIUFS णۚ • -PTT • 4UVEFOU5FBDIFS$SPTT&OUSPQZ •
.BTLFE-.-PTT • $PTJOF&NCFEEJOH-PTT • 4UVEFOU-BZFSܳпفѐۨযೞաঀஂೣ
Ѿҗ %JTUJM#&35 BEJTUJMMFEWFSTJPOPG#&35TNBMMFS GBTUFS DIFBQFSBOEMJHIUFS
Ѿҗ %JTUJM#&35 BEJTUJMMFEWFSTJPOPG#&35TNBMMFS GBTUFS DIFBQFSBOEMJHIUFS
'BTU#&35 "4FMGEJTUJMMJOH#&35XJUI"EBQUJWF*OGFSFODF5JNF 'BTU#&35B4FMGEJTUJMMJOH#&35XJUI"EBQUJWF*OGFSFODF5JNF
• 5FODFOU3IJOP#JSE&MJUF5SBJOJOH1SPHSBNীࢲಎ٬߉ইࢿػ֤ޙ • 4QFFE"DDVSBDZܳઑоמೠ#&35.PEFMઁউ • "EBQUJWF*OGFSFODFооמೠ#&35 4FMG%JTUJMMJOHNFDIBOJTN 'BTU#&35B4FMGEJTUJMMJOH#&35XJUI"EBQUJWF*OGFSFODF5JNF 'BTU#&35
'BTU#&35B4FMGEJTUJMMJOH#&35XJUI"EBQUJWF*OGFSFODF5JNF णۚ
'BTU#&35B4FMGEJTUJMMJOH#&35XJUI"EBQUJWF*OGFSFODF5JNF णۚ • णࣽࢲ • 1SFUSBJOJOH'JOF5VOJOH4FMGEJTUJMMBUJPO • 4FMG%JTUJMMBUJPOزউ୭࢚ਤ#SBODI৬ೞਤ#SBODI$SPTT&OUSPQZ҅ • 6ODFSUBJOUZѐ֛بੑ
• п-BZFS#SBODI߹۽6ODFSUBJOUZ҅ • оࢸ6ODFSUBJOUZоծਸࣻ۾"DDVSBDZо֫
Ѿҗ 'BTU#&35B4FMGEJTUJMMJOH#&35XJUI"EBQUJWF*OGFSFODF5JNF
Ѿҗ 'BTU#&35B4FMGEJTUJMMJOH#&35XJUI"EBQUJWF*OGFSFODF5JNF
Ѿҗ 'BTU#&35B4FMGEJTUJMMJOH#&35XJUI"EBQUJWF*OGFSFODF5JNF
%ZOB#&35 %ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI %ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI
• )VBXFJ/PBIsT"SL-BC • XJEUI EFQUIߑೱਵ۽"EBQUJWFೠ#&35ઁউ • 'VMM#&35.PEFMXJEUIBEBQUJWF#&35XJEUIEFQUIBEBQUJWF#&35ള۲ %ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI %ZOB#&35
%ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI णۚ
%ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI णۚ
%ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI णۚ
%ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI णۚ • 8JEUIण • 5FBDIFS4PGU5BSHFUҗ$SPTTFOUSPQZ ߬٬ۨয )JEEFO-BZFSח.4& • %BUBBVHNFOUBUJPOਊ
• %FQUIण • NPE E N@E ੋۨযܳESPQ • FYNVMUJUQMJFSח ਸESPQ • MPTTחXJEUI৬эؘXFJHIUחܴ • ݄݃ীHSPVOEUSVUIMBCFMਸ$SPTT&OUSPQZܳݡৈࢲGJOFUVOJOH
Ѿҗ %ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI
Ѿҗ %ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI
Ѿҗ %ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI
Ѿҗ %ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI
Ѿҗ %ZOB#&35%ZOBNJD#&35XJUI"EBQUJWF8JEUIBOE%FQUI
хࢎפ✌ ୶оޙژחҾӘೠݶઁٚইېোۅ۽োۅࣁਃ .BDIJOF-FBSOJOH4PGUXBSF&OHJOFFS &NBJMVLKBF!TDBUUFSMBCDPLS