Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Antibióticos que atacan la pared celular I

Semiramis C
February 28, 2020

Antibióticos que atacan la pared celular I

Semiramis C

February 28, 2020
Tweet

More Decks by Semiramis C

Other Decks in Science

Transcript

  1. Antibióticos que atacan a la pared celular - Parte I

    Tópico selecto "Mecanismo de acción de antibióticos, resistencia y perspectivas" Programa de Doctorado en Ciencias Biomédicas y Licenciatura en Ciencias Genómicas UNAM 2019
  2. La pared celular le da rigidez a la bacteria, y

    le ayuda a mantener su forma (Walsh & Wencewicz, 2016; Santesmases, 2016)
  3. El lípido II es uno de los principales targets (Müller,

    Klöckner, & Schneider, 2017; Walsh & Wencewicz, 2016)⁠
  4. El lípido II es uno de los principales targets •(Lipo)

    Glycopeptides •Lantibiotics •Bacitracins •Peptidyl nucleosides •Lysostaphin Vancomycin Teicoplanin Others Nisin Mersacidin Monoderms Tunicamycin Bacitracin
  5. RESISTENCIA (Lipo)Glicopéptidos: evitar reconocimiento; el caso de los operones Van

    (McGuinness, Malachowa, & DeLeo, 2017) !!! Tardaron 30 años en dar problemas
  6. RESISTENCIA (Lipo)Glicopéptidos: evitar reconocimiento; el caso de los operones Van

    (Zeng et al., 2016)⁠ * Dependencia de vancomicina Vancomycin & Teicoplanin induced Vancomycin - only induced
  7. Lantibióticos- Nisina: reconocimiento del PP del lípido II y formación

    de poros (Walsh & Wencewicz, 2016; Islam, Nagao, Zendo, & Sonomoto, 2012)
  8. RESISTENCIA lantibióticos: repeler el antibiótico, evitar que entre (Draper, Cotter,

    Hill, & Ross, 2015) Añadir cargas positivas Engrosar la pared celular como respuesta al daño de la misma Formación de biofilm
  9. 1-Secuestro de bactoprenol PP (externo) 2-Ya no se desfosforila para

    reciclarlo dentro del citoplasma 3-MraY se queda sin sustrato Bacitracina: el lariat secuestra al bactoprenol PP (Walsh & Wencewicz, 2016; Müller, Klöckner, & Schneider, 2017)
  10. RESISTENCIA bacitracina: compensar el secuestro de C55 PP; operones bcr

    (Charlebois, Jalbert, Harel, Masson, & Archambault, 2012; Han et al., 2015)
  11. Tunicamicina: inhibición competitiva a MraY; uracil pocket (* citoplasma *

    ) (Walsh & Wencewicz, 2016; Hakulinen et al., 2017)
  12. Lysostaphin: degradación de la pared celular de Staphylococcus aureus (y

    biofilms) (Wu, Kusuma, Mond, & Kokai-Kun, 2003) Endopeptidasa Glucosamidasa Amidasa
  13. Charlebois, A., Jalbert, L.-A., Harel, J., Masson, L., & Archambault,

    M. (2012). Characterization of Genes Encoding for Acquired Bacitracin Resistance in Clostridium perfringens. PLoS ONE, 7(9), e44449. https://doi.org/10.1371/journal.pone.0044449 Draper, L. A., Cotter, P. D., Hill, C., & Ross, R. P. (2015). Lantibiotic Resistance. Microbiology and Molecular Biology Reviews, 79(2), 171–191. https://doi.org/10.1128/MMBR.00051-14 Hakulinen, J. K., Hering, J., Brändén, G., Chen, H., Snijder, A., Ek, M., & Johansson, P. (2017). MraY- antibiotic complex reveals details of tunicamycin mode of action. Nature Chemical Biology, 13(3), 265–267. https://doi.org/10.1038/nchembio.2270 Han, X., Du, X.-D., Southey, L., Bulach, D. M., Seemann, T., Yan, X.-X., … Rood, J. I. (2015). Functional Analysis of a Bacitracin Resistance Determinant Located on ICE Cp1 , a Novel Tn 916 - Like Element from a Conjugative Plasmid in Clostridium perfringens. Antimicrobial Agents and Chemotherapy, 59(11), 6855–6865. https://doi.org/10.1128/AAC.01643-15 Howden, B. P., Davies, J. K., Johnson, P. D. R., Stinear, T. P., & Grayson, M. L. (2010). Reduced Vancomycin Susceptibility in Staphylococcus aureus, Including Vancomycin-Intermediate and Heterogeneous Vancomycin-Intermediate Strains: Resistance Mechanisms, Laboratory Detection, and Clinical Implications. Clinical Microbiology Reviews, 23(1), 99–139. https://doi.org/10.1128/CMR.00042-09
  14. Islam, M. R., Nagao, J., Zendo, T., & Sonomoto, K.

    (2012). Antimicrobial mechanism of lantibiotics. Biochemical Society Transactions, 40(6), 1528–1533. https://doi.org/10.1042/BST20120190 Kapp, U., Macedo, S., Hall, D. R., Leiros, I., McSweeney, S. M., & Mitchell, E. (2008). Structure of Deinococcus radiodurans tunicamycin-resistance protein (TmrD), a phosphotransferase. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 64(Pt 6), 479–86. https://doi.org/10.1107/S1744309108011822 McGuinness, W. A., Malachowa, N., & DeLeo, F. R. (2017). Vancomycin Resistance in Staphylococcus aureus . The Yale Journal of Biology and Medicine, 90(2), 269–281. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28656013 Müller, A., Klöckner, A., & Schneider, T. (2017). Targeting a cell wall biosynthesis hot spot. Natural Product Reports, 34(7), 909–932. https://doi.org/10.1039/C7NP00012J Santesmases, M. J. (2016). The Bacterial Cell Wall in the Antibiotic Era: An Ontology in Transit Between Morphology and Metabolism, 1940s-1960s. Journal of the History of Biology, 49(1), 3–36. https://doi.org/10.1007/s10739-015-9417-4 Walsh, C. (2003). Antibiotics. American Society of Microbiology. https://doi.org/10.1128/9781555817886
  15. Walsh, C., & Wencewicz, T. (2016). Antibiotics: Challenges, Mechanisms, Opportunities,

    2nd Edition. American Society of Microbiology. https://doi.org/10.1128/9781555819316 Wu, J. A., Kusuma, C., Mond, J. J., & Kokai-Kun, J. F. (2003). Lysostaphin Disrupts Staphylococcus aureus and Staphylococcus epidermidis Biofilms on Artificial Surfaces. Antimicrobial Agents and Chemotherapy, 47(11), 3407–3414. https://doi.org/10.1128/AAC.47.11.3407-3414.2003 Zeng, D., Debabov, D., Hartsell, T. L., Cano, R. J., Adams, S., Schuyler, J. A., … Pace, J. L. (2016). Approved Glycopeptide Antibacterial Drugs: Mechanism of Action and Resistance. Cold Spring Harbor Perspectives in Medicine, 6(12), a026989. https://doi.org/10.1101/cshperspect.a026989