Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning Experiment Tips
Search
Shintaro Shiba
June 01, 2020
Technology
0
1.5k
Machine Learning Experiment Tips
Tips for more productive machine learning experiments
Shintaro Shiba
June 01, 2020
Tweet
Share
More Decks by Shintaro Shiba
See All by Shintaro Shiba
3D study group 201902: Event-based vision
shiba24
0
300
Sparse and Dense Data with CNNs: Depth Completion and Semantic Segmentation
shiba24
0
400
ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst
shiba24
0
770
Probabilistic Robotics chap 6-7
shiba24
0
610
Probabilistic Robotics chap 1-5
shiba24
0
470
Other Decks in Technology
See All in Technology
GraphRAG グラフDBを使ったLLM生成(自作漫画DBを用いた具体例を用いて)
seaturt1e
1
150
ローカルLLMとLINE Botの組み合わせ その2(EVO-X2でgpt-oss-120bを利用) / LINE DC Generative AI Meetup #7
you
PRO
1
160
AI-Readyを目指した非構造化データのメダリオンアーキテクチャ
r_miura
1
320
アウトプットから始めるOSSコントリビューション 〜eslint-plugin-vueの場合〜 #vuefes
bengo4com
3
1.8k
「タコピーの原罪」から学ぶ間違った”支援” / the bad support of Takopii
piyonakajima
0
140
SQLAlchemy の select(User).where(User.id =="123") を理解してみる/sqlalchemy deep dive
3l4l5
3
350
会社を支える Pythonという言語戦略 ~なぜPythonを主要言語にしているのか?~
curekoshimizu
3
670
ヘンリー会社紹介資料(エンジニア向け) / company deck for engineer
henryofficial
0
390
Dify on AWS 環境構築手順
yosse95ai
0
130
様々なファイルシステム
sat
PRO
0
240
CREが作る自己解決サイクルSlackワークフローに組み込んだAIによる社内ヘルプデスク改革 #cre_meetup
bengo4com
0
340
20251027_マルチエージェントとは
almondo_event
1
430
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Visualization
eitanlees
149
16k
Building an army of robots
kneath
305
46k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Raft: Consensus for Rubyists
vanstee
140
7.2k
The Cult of Friendly URLs
andyhume
79
6.6k
For a Future-Friendly Web
brad_frost
180
10k
A Tale of Four Properties
chriscoyier
161
23k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Transcript
個⼈開発のための 機械学習実験効率化tips By a Machine Learning software engineer Shintaro Shiba
動機 機械学習(だけに限らないが)の実装・実験は • ⾊々な実験条件の⽐較やコードのバージョン管理が⼤変 • 前処理も複雑になりがち • 特に3D系では、Point Cloudを扱ったりする際の可視化、時刻の同期、Pose周りの 問題などもあり⼀層複雑でデバッグが⼤変
• 実験スクリプトのボトルネックはGPUメモリへのコピーなのか?GPUな のか? データローダなのか?問題 • データが⼤量で、デバッグに時間がかかる問題 • tensorboard重すぎ問題、いちいちリモートサーバー⾏きたくない問題 • 可視化⽤のデータの保存先やネーミング問題 ソフトウェアエンジニア的な観点から効率化ツールを組み合わせ、 個⼈として可能な限り⾼速に開発する
Contents • jupyterを使⽤した探索的データ解析とデバッグ • Gitlabを使⽤した⾃動ユニットテスト • W&Bを使⽤した機械学習実験管理
jupyterを使⽤した探索的データ解析とデ バッグ • (ポピュラーだが)jupyterはデータ解析やデバッグには便利 • 例えばデータの統計量をみたい • 例えば複数のデータの時間的な同期を確認する • ここでのTipsは
• ⾃分の書いた関数をきちんとimportして使う • Autoreloadを使えば.pyファイル内の修正がすぐに反映される(参考) • ファイル名は(⻑くてもいいので)わかりやすいものにしておくこと • 不要なcellはガンガン消すこと(将来⾒たくなくなる)
Gitlabを使⽤した⾃動ユニットテスト (そもそも)ユニットテストを書く、1つでも良い • その実験で、「バグっていたら致命的な関数」は何か? • テスト書くの⾯倒… • →実際は書いてみると15分くらいで書ける • 最悪assertを埋め込むだけでも良い
• (あと書いたことがある⼈は就職に有利) 実装が難しい 実装が簡単 影響が致命的 影響が軽微 ここだけでも やっておく
Gitlabを使⽤した⾃動ユニットテスト テスト⽤の軽量データセットを⾃分で作成する • 本データと同じ形式にしておく • 例えば画像なら、ランダムに集めた10枚だけ • 例えばpickleやarrayが保存されているファイルなら、短くサンプリング • これらの軽量なテスト⽤データだけはgit管理下に⼊れてしまう
• 数枚程度の画像ならCPUで⼗分テスト可能になる • ちょっと⾯倒だが、実際は20分くらいあればできる
Gitlabを使⽤した⾃動ユニットテスト テスト環境等を定義する 右のファイルをコピペして保存 最終的に下のような形になる
Gitlabを使⽤した⾃動ユニットテスト Gitlabを使⽤して⾃動でテストされるようにする • 最初からGitlabのみを使⽤しても良い • Githubを使⽤したい場合には、GitlabでCI/CD⽤のProjectを作成できる: Githubへのpushによって⾃動でCI/CDが回る
W&Bを使⽤した機械学習実験管理 • デモします(公式docを読んでね) • 個⼈利⽤・アカデミック利⽤は無料(100GBまで) • 始め⽅ • Web経由の登録 https://app.wandb.ai/
と • pip install wandb • できること • Argparseの引数全部まとめて記録、Commit IDの記録 • Yamlで定義されたHyper parameter記録、結果⽐較 • モデルの重みの可視化 • CPU/GPU使⽤率モニタリング、モデルの重み等の可視化 • 画像、点群、matplotlibのplotの記録と可視化・あとでのダウンロード • Hyper parameter sweep
スマートフォン・Slack連携 • W&Bはそもそもスマホから結果を確認可能 • 地味だが、ssh不要、PCさえ不要なのは嬉しい • W&Bから、実験の終了時(成功or失敗)に slackを⾶ばす • GitlabからもPipelineの通知をslackに⾶ばす