Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning Experiment Tips
Search
Shintaro Shiba
June 01, 2020
Technology
0
1.5k
Machine Learning Experiment Tips
Tips for more productive machine learning experiments
Shintaro Shiba
June 01, 2020
Tweet
Share
More Decks by Shintaro Shiba
See All by Shintaro Shiba
3D study group 201902: Event-based vision
shiba24
0
280
Sparse and Dense Data with CNNs: Depth Completion and Semantic Segmentation
shiba24
0
380
ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst
shiba24
0
720
Probabilistic Robotics chap 6-7
shiba24
0
590
Probabilistic Robotics chap 1-5
shiba24
0
460
Other Decks in Technology
See All in Technology
サービスでLLMを採用したばっかりに振り回され続けたこの一年のあれやこれや
segavvy
2
460
AI時代のデータセンターネットワーク
lycorptech_jp
PRO
1
290
1等無人航空機操縦士一発試験 合格までの道のり ドローンミートアップ@大阪 2024/12/18
excdinc
0
160
【re:Invent 2024 アプデ】 Prompt Routing の紹介
champ
0
140
マルチプロダクト開発の現場でAWS Security Hubを1年以上運用して得た教訓
muziyoshiz
3
2.3k
社内イベント管理システムを1週間でAKSからACAに移行した話し
shingo_kawahara
0
190
統計データで2024年の クラウド・インフラ動向を眺める
ysknsid25
2
850
大幅アップデートされたRagas v0.2をキャッチアップ
os1ma
2
540
サイバー攻撃を想定したセキュリティガイドライン 策定とASM及びCNAPPの活用方法
syoshie
3
1.3k
スタートアップで取り組んでいるAzureとMicrosoft 365のセキュリティ対策/How to Improve Azure and Microsoft 365 Security at Startup
yuj1osm
0
220
ずっと昔に Star をつけたはずの思い出せない GitHub リポジトリを見つけたい!
rokuosan
0
150
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
380
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
The Cost Of JavaScript in 2023
addyosmani
45
7k
A Tale of Four Properties
chriscoyier
157
23k
Statistics for Hackers
jakevdp
796
220k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Rails Girls Zürich Keynote
gr2m
94
13k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.4k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Building Adaptive Systems
keathley
38
2.3k
Transcript
個⼈開発のための 機械学習実験効率化tips By a Machine Learning software engineer Shintaro Shiba
動機 機械学習(だけに限らないが)の実装・実験は • ⾊々な実験条件の⽐較やコードのバージョン管理が⼤変 • 前処理も複雑になりがち • 特に3D系では、Point Cloudを扱ったりする際の可視化、時刻の同期、Pose周りの 問題などもあり⼀層複雑でデバッグが⼤変
• 実験スクリプトのボトルネックはGPUメモリへのコピーなのか?GPUな のか? データローダなのか?問題 • データが⼤量で、デバッグに時間がかかる問題 • tensorboard重すぎ問題、いちいちリモートサーバー⾏きたくない問題 • 可視化⽤のデータの保存先やネーミング問題 ソフトウェアエンジニア的な観点から効率化ツールを組み合わせ、 個⼈として可能な限り⾼速に開発する
Contents • jupyterを使⽤した探索的データ解析とデバッグ • Gitlabを使⽤した⾃動ユニットテスト • W&Bを使⽤した機械学習実験管理
jupyterを使⽤した探索的データ解析とデ バッグ • (ポピュラーだが)jupyterはデータ解析やデバッグには便利 • 例えばデータの統計量をみたい • 例えば複数のデータの時間的な同期を確認する • ここでのTipsは
• ⾃分の書いた関数をきちんとimportして使う • Autoreloadを使えば.pyファイル内の修正がすぐに反映される(参考) • ファイル名は(⻑くてもいいので)わかりやすいものにしておくこと • 不要なcellはガンガン消すこと(将来⾒たくなくなる)
Gitlabを使⽤した⾃動ユニットテスト (そもそも)ユニットテストを書く、1つでも良い • その実験で、「バグっていたら致命的な関数」は何か? • テスト書くの⾯倒… • →実際は書いてみると15分くらいで書ける • 最悪assertを埋め込むだけでも良い
• (あと書いたことがある⼈は就職に有利) 実装が難しい 実装が簡単 影響が致命的 影響が軽微 ここだけでも やっておく
Gitlabを使⽤した⾃動ユニットテスト テスト⽤の軽量データセットを⾃分で作成する • 本データと同じ形式にしておく • 例えば画像なら、ランダムに集めた10枚だけ • 例えばpickleやarrayが保存されているファイルなら、短くサンプリング • これらの軽量なテスト⽤データだけはgit管理下に⼊れてしまう
• 数枚程度の画像ならCPUで⼗分テスト可能になる • ちょっと⾯倒だが、実際は20分くらいあればできる
Gitlabを使⽤した⾃動ユニットテスト テスト環境等を定義する 右のファイルをコピペして保存 最終的に下のような形になる
Gitlabを使⽤した⾃動ユニットテスト Gitlabを使⽤して⾃動でテストされるようにする • 最初からGitlabのみを使⽤しても良い • Githubを使⽤したい場合には、GitlabでCI/CD⽤のProjectを作成できる: Githubへのpushによって⾃動でCI/CDが回る
W&Bを使⽤した機械学習実験管理 • デモします(公式docを読んでね) • 個⼈利⽤・アカデミック利⽤は無料(100GBまで) • 始め⽅ • Web経由の登録 https://app.wandb.ai/
と • pip install wandb • できること • Argparseの引数全部まとめて記録、Commit IDの記録 • Yamlで定義されたHyper parameter記録、結果⽐較 • モデルの重みの可視化 • CPU/GPU使⽤率モニタリング、モデルの重み等の可視化 • 画像、点群、matplotlibのplotの記録と可視化・あとでのダウンロード • Hyper parameter sweep
スマートフォン・Slack連携 • W&Bはそもそもスマホから結果を確認可能 • 地味だが、ssh不要、PCさえ不要なのは嬉しい • W&Bから、実験の終了時(成功or失敗)に slackを⾶ばす • GitlabからもPipelineの通知をslackに⾶ばす