Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AlphaGoの論文について
Search
Shunta Furukawa
April 09, 2016
Technology
0
76
AlphaGoの論文について
AlphaGoの論文「Mastering the game of Go with deep neural networks and tree search」について発表した際の資料です。
Shunta Furukawa
April 09, 2016
Tweet
Share
More Decks by Shunta Furukawa
See All by Shunta Furukawa
パーソナライズド広告配信 における純広告の在庫管理
shuntafurukawa
2
2.5k
Machida Tech Night #2 My Failure on Wally Game with Machine Learning
shuntafurukawa
0
79
Machida Tech Night #1 My First Use of Chainer
shuntafurukawa
0
46
路線認知地図の構築を支援するナビゲーションシステム
shuntafurukawa
1
140
Helpal - Help Exchanging Platform
shuntafurukawa
0
100
Other Decks in Technology
See All in Technology
「れきちず」のこれまでとこれから - 誰にでもわかりやすい歴史地図を目指して / FOSS4G 2025 Japan
hjmkth
1
300
AgentCon Accra: Ctrl + Alt + Assist: AI Agents Edition
bethany
0
100
いまからでも遅くない!SSL/TLS証明書超入門(It's not too late to start! SSL/TLS Certificates: The Absolute Beginner's Guide)
norimuraz
0
230
Shirankedo NOCで見えてきたeduroam/OpenRoaming運用ノウハウと課題 - BAKUCHIKU BANBAN #2
marokiki
0
190
Vibe Coding Year in Review. From Karpathy to Real-World Agents by Niels Rolland, CEO Paatch
vcoisne
0
140
防災デジタル分野での官民共創の取り組み (2)DIT/CCとD-CERTについて
ditccsugii
0
290
「使い方教えて」「事例教えて」じゃもう遅い! Microsoft 365 Copilot を触り倒そう!
taichinakamura
0
390
Node.js 2025: What's new and what's next
ruyadorno
0
250
技育祭2025【秋】 企業ピッチ/登壇資料(高橋 悟生)
hacobu
PRO
0
100
綺麗なデータマートをつくろう_データ整備を前向きに考える会 / Let's create clean data mart
brainpadpr
3
500
ComposeではないコードをCompose化する case ビズリーチ / DroidKaigi 2025 koyasai
visional_engineering_and_design
0
110
BI ツールはもういらない?Amazon RedShift & MCP Server で試みる新しいデータ分析アプローチ
cdataj
0
160
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Speed Design
sergeychernyshev
32
1.2k
Writing Fast Ruby
sferik
629
62k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Statistics for Hackers
jakevdp
799
220k
4 Signs Your Business is Dying
shpigford
185
22k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
How to Ace a Technical Interview
jacobian
280
24k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
BBQ
matthewcrist
89
9.8k
Transcript
Mastering the game of Go with deep neural networks and
tree search @Shunter
About Myself ࣗݾհ
ࣗݾհ 4 ໊લ 4 ݹढ़ଠ 4 ৬ۀ 4 גࣜձࣾ NTTυίϞ
4 ৽نࣄۀ։ൃ 4 ษڧձࢀՃͷಈػ 4 ৽نϏδωεʹਓೳ ͷՄೳੑΛײ͓ͯ͡Γɺ ͖ͪΜͱཧղΛ͍ͨͨ͠ Ίɻ
About Paper จʹ͍ͭͯ
จʹ͍ͭͯ 4 20161݄27ʹɺͦΕ·Ͱ ਓೳ͕উͭ͜ͱ͕͠ ͍ͱݴΘΕ͍ͯͨޟʹ͓͍ ͯɺGoogle(DeepMind) ͕ ։ൃͨ͠ʮAlphaGoʯ͕ϓ ϩΛഁͬͨɻ 4
ͦΕ·Ͱ௨ৗͷޟͰػց͕ϓ ϩʹউͬͨྫ͕ແ͘ɺউͭͷ ʹ10͔͔ΔͱݴΘΕ͍ͯͨ ͜ͱΛୡɻ 4 ຊจ͜ͷʮAlphGoʯʹ ͍ͭͯͷจͰ͋Δɻ
⚪ Background ⚫ എܠ
ͳͥޟ͍͠ͷ͔ʁ 4 ήʔϜͷใɺ ͱ͍͏ՁؔͰදݱͰ͖Δɻ 4 ήʔϜͷঢ়ଶͰɺͦͷঢ়ଶ͔ΒՁʢήʔϜͷ݁ ՌʣΛฦ͢ɻ 4 ήʔϜʹউͭʹɺՁ؍Λͬͯɺ࠷దͳखΛ࠶ؼ తʹܭࢉ͢Ε͍͍ɻ
4 खॱɺ୳ࡧͰදݱ͕Ͱ͖ɺͦͷେ͖͞ Ͱ͋Δɻ 4 : ࣍खͰબՄೳͳީิͷʢ༿ʣ 4 : ήʔϜͷ͞ʢਂ͞ʣ
ͳͥޟ͍͠ͷ͔ʁ 4 : ࣍खͰબՄೳͳީิͷʢ༿ʣ 4 : ήʔϜͷ͞ʢਂ͞ʣ 4 νΣε 4
4 4 ޟ 4 4 ! 4 શ෦୳͢ͷݱ࣮త͡Όͳ͍...
୳ࡧྖҬΛݮΒͨ͢Ίͷ 4 ํࡦؔ Λͬͯɺ༿Λݮ 4 ঢ়ଶ ʹ͓͚ΔՄೳͳߦಈ ͷ֬
4 ϞϯςΧϧϩ୳ࡧ(MCST) 4 ϥϯμϜʹਐΊͯΈͯɺٯࢉΛ͠ ͯํࡦؔͷΛߋ৽ 4 AlphaGo·ͰͰ࠷ڧͷޟAIMCST Λ͍ͬͯͨɻ 4 ͜Ε·ͰͷՁؔ ɺٴͼํࡦؔ ઢܗܭࢉ 4 AlphaGo͜ΕΒͷؔΛDeep LearningͰֶशͤͨ͞ɻ
⚪ Pipeline ⚫ ֶशύΠϓϥΠϯ
ֶशύΠϓϥΠϯ 4 ࣮σʔλ͔ΒֶͿʢڭࢣ͋ Γʣ 4 : ؆қํࡦؔ(SLP1)ɺ ύϥϝʔλ 4 :
௨ৗํࡦؔ (SLP2)ɺύϥϝʔλ 4 AIಉ࢜ͰઓΘͤͯڧԽ 4 : ڧԽֶशํࡦؔ (RLP)ɺύϥϝʔλ 4 : Ձؔɺύϥϝʔλ
⚪ Supervised leaerning of policy network ⚫ ڭࢣ͋Γֶश ํࡦؔ
None
ํࡦؔ 4 ڭࢣσʔλΛݩʹֶश͞ΕΔ NN 4 ΈࠐΈ ͱ ReNLU ͷަ ޓ
4 ࠷ޙSoftmaxͰɺ࣍ʹ ଧͯΔखͷ֬Λฦ͢ 4 ϥϯμϜͳ൫໘͔Β֬త ޯ্ঢ๏(SGA)Ͱֶश
2छྨͷํࡦؔ : ڭࢣ͋Γֶशํࡦؔɺύϥϝʔλ 4 ύϑΥʔϚϯεॏࢹ 4 ҰճͷΞΫγϣϯΛ༧ଌ͢ΔͨΊʹɺ3ms 4 ਖ਼֬ੑ 57.0%
ʢઌߦ༧ଌثͰ44.4%͕࠷ߴʣ : ؆қํࡦؔɺύϥϝʔλ 4 ಛྔΛগͳ͘ɺ׆ੑԽؔʹ ReLUΛͬͨͷ 4 ҰճͷΞΫγϣϯΛ༧ଌ͢ΔͨΊʹɺ2μs 4 ਖ਼֬ੑ 24.2%
⚪ Reinforcement learning of policy networks ⚫ ڧԽֶश ํࡦؔ
None
ڧԽֶश ํࡦؔ 4 ઌ΄Ͳͷํࡦؔͷύϥϝʔλ Λෳ 4 ৽ͨʹํࡦؔ Λ࡞ 4 ํࡦؔಉ࢜ΛͬͯɺઓΘͤΔ
4 ରઓ૬खաڈͷύϥϝʔλͷঢ়ଶ͔ΒϥϯμϜʹ 4 ϥϯμϜʹ͢Δ͜ͱͰաֶशࢭ 4 ใुؔ ΛԾఆɻ 4 : ਐߦ͍ͯ͠Δ࣌ؒ, : ֬ఆͨ࣌ؒ͠ 4 ࢼ߹ΛਐΊͯɺউ͕ͪ1, ෛ͚͕0 4 ࢼ߹͕֬ఆͨ͠ΒใुؔΛͬͯɺḪͬͯ
ڧԽֶश ํࡦؔͷධՁ 4 ڭࢣ͋Γֶशͷํࡦؔ ͱ͘Βͯ 80% ͷউ 4 KGS
ୈ̎Ґͷ࣮ྗͷΦʔϓϯιʔεAIɺPachi ͱରܾ 4 MCS ϕʔεɻ̍ख͋ͨΓ10ສͷݕࡧɻ 4 RLP ͷউ 85% (SLP 11%)
⚪ Reinforcement learning of value networks ⚫ ڧԽֶश Ձؔ
None
Ձ؍ 4 : ϙϦγʔpͷ࣌ʹ͋Δঢ়ଶ͔ΒɺউͯΔظΛฦ͢ 4 ࣮ࡍʹશͳՁ؍( )Λ࡞Δͷ͍͠ͷͰ ઌʹ࡞ͬͨ࠷ڧͷํؔ ( )͔Βࢉग़
: 4 ύϥϝʔλ : 4 ωοτϫʔΫߏɺํؔʹ͍͕ۙɺग़ྗ͕̍ͭɻ 4 ঢ়ଶ(s) ͱ ݁Ռ(z) ͷΈ߹ΘͤΛڭࢣͱֶͯ͠शΛ͍ͯ͘͠ɻ
Ձ؍ͷֶशͷࣦഊ 4 ਓؒͷعේ͚ͩͰֶश͠Α͏ͱ͢Δͱɺաֶश͕ى͖͢ ͍ɻ 4 Ұ࿈ͷعේ࿈ଓ͓ͯ͠Γɺউͪෛ͚ͷใΛҰ؏ͯ͠อ ͍࣋ͯ͠ΔͨΊ 4 MSEֶ͕शσʔλͰ 19%
͕ͩ ݕূσʔλͰ 37% ͱͳͬ ͯ͠·ͬͨɻ 4 RLPͷعේ͔Β3000ສ݅ͷʮผࢼ߹ʯͷ(s,z)ηοτΛநग़ 4 MSEֶ͕शσʔλͰ22.6%, ݕূ༻σʔλͰ 23.4% 4 ̎ͭʹ͕ࠩগͳ͍ͷͰաֶश͍ͯ͠ͳ͍ɻ
⚪ Searching with policy and value networks ⚫ ํͱՁؔʹΑΔݕࡧ
ݕࡧํ๏ جຊతʹMCTSɻ̐ͭͷϑΣʔζʹผΕΔɻ 4 બɺ֦ுɺධՁɺอଘ
બ ( Selection ) 4 ߦಈՁؔQͱϘʔφεؔͷ߹ܭ͕࠷େʹͳΔͷΛબͿɻ 4 Ϙʔφεؔɺͦͷঢ়ଶͷ֬( )ͱ๚ճ( )Ͱܾ·Δɻ
: ڭࢣ͋Γֶशͷํࡦؔ 4 ๚ճ͕૿͑Δ΄ͲɺP͕ݮ͍ͬͯ͘ͷɺ֦ுΛଅਐ͢Δͨ Ί
֦ுͱධՁ ( Expantion & Evaluation ) 4 ͕ࠓ·ͰγϛϡϨʔγϣϯͨ͜͠ͱͳ͍( )ͩ ͬͨ߹ʹɺ༿Λ֦ு͢Δɻ
4 ֦ுͨ͋͠ͱʹɺͦͷʹ͍ͭͯධՁΛߦ͏ɻ(ධՁؔ ) 4 ؆қํࡦؔ ΛͬͯઓΘͤͨ݁Ռ[0,1] 4 ύϥϝʔλ ΛͬͯɺՁ؍ͱૉૣ͍γϛϡϨʔγϣ ϯʹΑΔ݁ՌΛࠞͥ͋Θ͍ͤͯΔɻ
อଘ ( Backup ) 4 γϛϡϨʔγϣϯ͕ऴΘͬͨΒɺ֤༿ϊʔυͷؔΛߋ৽͍ͯ͘͠ɻ 4 ๚ճͱߦಈՁ؍Qͷߋ৽ ճʹ
Λ௨͔ͬͨͲ͏͔ɻ[1,0] γϛϡϨʔγϣϯ͕ऴΘͬͨஈ֊Ͱɺϧʔτ͔Β ͕Ұ൪େ͖͍$ $a$ߦಈΛબ͢Δɻ
ิ 4 ͷܭࢉ ΑΓ ͷ΄͏͕ྑ͍ 4 ͷܭࢉٯɻ ΑΓ ͷ΄͏͕ྑ͍ɻ 4
࠷దͳ̍खΛ୳͘͢࠷దԽ͞Ε͓ͯΓɺ֬ͱͯ͠ ͔ͨΑΔɻ 4 ਓؒͷଧͬͨखͷू߹Ͱ͋Γɺଧͪͦ͏ͳखΛΑΓද͍ͯ͠ Δɻ 4 MCTS ͷγϛϡϨʔγϣϯCPUͰඇಉظϚϧνεϨου࣮ߦ 4 Ձ؍ํࡦؔGPUͰฒߦͰॲཧ͍ͯ͠Δɻ 4 AlphaGo 40εϨουɺ48CPUs, 8GPUs 4 ࢄAlphaGo 40εϨουɺ1202CPUsɺ176GPUs
⚪ How Strong Alpha Go is? ⚫ ݁Ռ
ΠϩϨʔτ (WikipediaΑΓ) 4 ήʔϜͷ݁ՌҰํͷউͪɺҰํͷෛ͚ͷΈͱ͠ɺҾ͖͚ߟྀ͠ͳ͍ ʢ0.5উ0.5ഊͱѻ͏ͷͱ͢Δʣɻ 4 200ͷϨʔτ͕ࠩ͋ΔରہऀؒͰɺϨʔτͷߴ͍ଆ͕76ύʔηϯ τͷ֬Ͱউར͢Δɻ 4 ฏۉతͳରہऀͷϨʔτΛ1500ͱ͢Δɻ
4 ఆͰ͋ΓɺϓϩϨϕϧͰ16ɺ௨ৗ32ΛͱΔ͜ͱ͕ଟ͍ɻ
͍ΖΜͳGoͷϓϩάϥϜͱͷൺֱ
͍ΖΜͳGoͷϓϩάϥϜͱͷൺֱ
ωοτϫʔΫͷ༗ແʹΑΔൺֱ
ΞʔΩςΫνϟʹΑΔൺֱ
⚪ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ɻ ⚫