Y ʹӨڹΛ༩͑Δ • ॏ L ৺Ҡ২ A ʹӨڹΛ༩͑Δ • ॏ L ࢮ Y ʹӨڹΛ༩͑Δ • ৺Ҡ২ A ͱࢮ Y ͷ Common cause L ͷΈͰ͋Δ ະଌఆͰ͋ͬͨͱͯ͠ɼcommon cause DAG ʹؚΊΔඞཁ͕͋Δ Ya ⊥ ⊥ A|L for all a The assumption of conditional exchangeability
ͷ causal effect Λ࣋ͨͳ͍ • ϋϓϩλΠϓ A ɼ٤Ԏ Y ৺ଁප L ͷcausal effectΛ࣋ͭ • LɼA ͱ Y ͷCommon effectʢڞ௨ޮՌʣͰ͋Δ • Common effect Ͱ͋Δ L ΛɼColliderʢ߹ྲྀʣͱ͍͏ʢA → L ← Yʣ Collider Common effect
͕ marginally associated Ͱɼ Mediator B Ͱ͚݅ͮΔͱɼA ͱ Y conditionally independent Ͱ͋Δ • ؔ࿈͠ͳ͍ Causal graph theory Pr(Y = 1|A = 1, B = b) = Pr(Y = 1|A = 0, B = b) for all b A⊥ ⊥ Y|B Block
Yؔ࿈͢Δ͔ʁ A: ϋϓϩλΠϓ Y: ٤Ԏ L: ৺ଁප Unassociation Association? • ৺ଁපΛ࣋ͭݸਓʹݶఆ͠ɼϋϓϩλΠϓ A ͷ٤Ԏ Y ͷؔ࿈ΛධՁ͢Δ • A ͱ Y ͷΈ͕ L ͷݪҼͩͱ͢Δ • ৺ଁපΛ࣋ͭूஂͰɼ Ծʹશһ͕ϋϓϩλΠϓͳͩ͠ͱ͢Δͱɼશһ͕٤ԎऀͰͳ͍ͱ͍͚ͳ͍ Ծʹશһ͕ඇ٤Ԏऀͩͱ͢Δͱɼશһ͕ϋϓϩλΠϓ͋ΓͰͳ͍ͱ͍͚ͳ͍ Common effect (Collider) LΛ͚݅ͮΔͱɼA ͱ Y ؔ࿈͢Δ
ͱ Yؔ࿈͢Δ͔ʁ Unassociation Association • Figure 6.7 ʹར࣏ྍ C ΛՃ • ͜ͷ࣏ྍ৺ଁපͷஅͷ݁ՌΘΕΔ • C Common effect L ͷӨڹΛड͚Δ Common effect (Collider) Lͷࢠଙ C Λ͚݅ͮΔͱɼA ͱ Y ؔ࿈͢Δ Association?
(Mediator) (Marginally) Association (Conditionally) Independent Common cause (Marginally) Association (Conditionally) Independent Common effect (Marginally) Independent (Conditionally) Association Association between A and Y is…
• ݚڀऀɼݸਓ͕͔͔ͬͨපӃͷҩྍͷ࣭ V ʹΑͬͯɼ ৺ଁҠ২ͷҼՌ͕ؔҟͳΔͷͰͳ͍͔ͱߟ͑ͨ • V ͔Β A ʹҹ͕ͳ͍ • A ϥϯμϜʹׂΓ͚ΒΕ͍ͯΔ͔Β • V A ͱ Y ͷڞ௨ݪҼͰͳ͍͔Β • Question Λ໌֬ʹ͢ΔͨΊʹɼDAGʹؚΜ͚ͩͩ Figure 6.11 ɼV Λؚ·ͳͯ͘ଥͳDAGͰ͋Δ V ͔Β Y ͷܦ࿏ʹ͋Δม effet modifier ͱͯ͠ద • ߹ซ N
“Use of directed acyclic graphs (DAGs) in applied health research: review and recommendations,” Epidemiology. medRxiv. doi: 10.1101/2019.12.20.19015511.
“Use of directed acyclic graphs (DAGs) in applied health research: review and recommendations,” Epidemiology. medRxiv. doi: 10.1101/2019.12.20.19015511. ظؒ 1999 - 2017 ݕࡧ Word “directed acyclic graphs” or similar or citing DAGitty ഔମ Scopus, Web of Science, Medline, and Embase
“Use of directed acyclic graphs (DAGs) in applied health research: review and recommendations,” Epidemiology. medRxiv. doi: 10.1101/2019.12.20.19015511.
“Use of directed acyclic graphs (DAGs) in applied health research: review and recommendations,” Epidemiology. medRxiv. doi: 10.1101/2019.12.20.19015511.
collider ΛؚΉ 3. Collider ͷ ࢠଙ͚͍݅ͮͯͳ͍ Path ࣍ͷ݅ͷͱ͖ʹݶΓɼblock ͞ΕΔ 2มؒͷͯ͢ͷ path ͕ block ͞ΕΔ D-separation $ # " A is d-separation from B conditional on C. A is statistically independent of B given C. D-separation and statistically independent
null hypothesis of no causal effects of A on any individual’s Y holds : " A has a causal effect on the outcome Y of at least one individual in the population Null Pr(Ya=1 = 1) ≠ Pr(Ya=0 = 1) Pr(Y = 1|A = 1) ≠ Pr(Y = 1|A = 0) Null ʹͳΔ͕࣌͋Δ Y A V = 0 Y A V = 1 + - Cancel out d-separation Ͱͳ͚Εɼnon-zero association Faithfulness d-connect Ͱ͋Εɼcancel out Ͱ zero associationʹͳΒΜΑ
Ͱ Matching ͢Δ L ͱ A ؔ࿈͠ͳ͍ LͷΛA = 1ͱA = 0Ͱἧ͑Δ S Matching ʹ selection Λද͢ ղੳ͞ΕΔͷɼS = 1 ͷΈ S collider L → A L → S ← A L ͱ A ͷؒʹ2ͭͷؔ࿈ͷύε ໃ६ L → A L → S ← A Cancel out L ͱ A ؔ࿈͠ͳ͍
Common cause (Marginally) Association (Conditionally) Independent Common effect (Marginally) Independent (Conditionally) Association Association between A and Y is…