Upgrade to Pro — share decks privately, control downloads, hide ads and more …

3D Prior is All You Need: Cross-Task Few-shot 2...

3D Prior is All You Need: Cross-Task Few-shot 2D Gaze Estimation

学習済みの3次元視線方向推定モデルを少数枚の画像でファインチューニングすることで、スクリーンとカメラ間の外部キャリブレーションを行わずに高精度な2次元注視点推定を実現する

Avatar for Spatial AI Network

Spatial AI Network

November 04, 2025
Tweet

More Decks by Spatial AI Network

Other Decks in Technology

Transcript

  1. 3D Prior is All You Need: Cross-Task Few-shot 2D Gaze

    Estimation 2025/10/14 Spatial AI Network勉強会 京都⼯芸繊維⼤学 橋本和希 Authors: Yihua Cheng, Hengfei Wang, Zhongqun Zhang, Yang Yue,Boeun Kim, Feng Lu, Hyung Jin Chang Venue: CVPR 2025 Web: https://www.yihua.zone/work/gaze322/
  2. 視線推定の例 4 3次元視線⽅向推定(接写型) Pupil labs apple vision pro canon EOS

    R3 ⾒ている場所にフォーカス ⾒ている場所がカーソル https://global.canon/ja/quality/story/2021-eye-control-af.html https://www.apple.com/jp/newsroom/2023/06/introducing-apple-vision-pro/ https://docs.pupil-labs.com/ https://docs.pupil-labs.com/
  3. 視線計測の例 3次元視線⽅向推定(俯瞰カメラ) 5 Dynamic 3D Gaze from Afar:Deep Gaze Estimation

    from Temporal Eye-Head-Body CoordinationPermalink[Soma Nonaka+ , CVPR2022] Gaze estimation using transformer [ Yihua Cheng+, ICPR2022]
  4. 提案⼿法のアイデア 12 g = H3D(I;β) 注視点 = 視線⽅向とスクリーンとの交点 P g

    o n = R[:,2] R , t H3D (1) (2) (3) (4) (5) 既存の他の⼿法で求める 交点を求める スクリーン 座標系に変換 式1-3をH2Dとする ⽬的関数 顔画像
  5. 実験設定 評価データ : MPIIGaze[Appearance-based gaze estimation in the wild, Xucong

    Zhang+, CVPR2015] EVE[Towards end-to-end video-based eye-tracking, Seonwook Park+, ECCV2020], GazeCapture[Eye tracking for everyone, Kyle Krafka+, CVPR2016] 学習枚数 : 10枚 17 MPIIGaze(ノートPC) EVE(デスクトップ) GazeCaputure(モバイル)
  6. 実験設定 使⽤したH3Dのネットワーク構造 : GazeTR [Yihua Cheng and Feng Lu, ICPR,

    2022] 学習データセット : Gaze360 [Petr Kellnhofer+, ICCV2019] 18 Gaze360
  7. 実験設定 使⽤した3次元顔ランドマーク検出推定 : Towards fast, accurate and stable 3d dense

    face alignment [Jianzhu Guo+, ECCV] 19 (5) (11) (12) ⽬的関数はこの3つ 1 0.4 0.25 重み
  8. 21 g o p カメラとスクリーンの 相対姿勢がないため Direct Projection (スクリーンとカメラの相対姿勢は既知) Direct

    Learning p R(既知) t(既知) 物理ベース,H3Dを学習すると精度が向上する Learning with Known Pose
  9. データ拡張の効果の評価結果 22 Proj : データ拡張なし PS-Label : 動的疑似ラベルを含める(+10枚) 𝓛unc :

    ジッターのデータ拡張を含める(+40枚) ⼤きな精度向上はみられない
  10. Tを⽤いる必要性 24 変換⾏列Tの影響を評価する RAT[Generalizing gaze estimation with rotation consistency, Yiwei

    bao+, CVPR2022] : 既存の擬似ラベリング⼿法 w/o Pseudo-Label : 擬似ラベルなし Ours(w/o T) : 動的擬似ラベルを回転⾏列Tなしで⽣成した場合 Ours : 本⼿法 擬似ラベルを⽣成する際,Tは必要
  11. 変換⾏列Tと顔3D位置oの関係 25 2D 2D 3D 3D 3D 3D 動的擬似ラベル⽣成の流れ 座標系

    カメラ カメラ H3D H3D 反転F(g) T T -1 H3D カメラ カメラ H3D o p p Q(p) • R,tはH3D(βk)の出⼒gと同時最適化されるので,βk座標系のはず • oはβk座標系であるべきだが,β0座標系(カメラ座標系)で固定されているはず • 学習中もoはβ0座標系のままなので,数式としてはおかしいが,このoに合うように学習がと にかく進んでいるので,逆投影も成⽴する? oもTで変換するべきでは?