Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Chef: Prototyping Symbolic Execution Engines fo...

Chef: Prototyping Symbolic Execution Engines for Interpreted Languages

Stefan Bucur

March 03, 2014
Tweet

More Decks by Stefan Bucur

Other Decks in Research

Transcript

  1. CHEF Prototyping Symbolic Execution Engines for Interpreted Languages School of

    Computer and Communication Sciences EPFL, Switzerland Stefan Bucur, Johannes Kinder, George Candea
  2. Automated Software Testing Symbolic execution is used for bug finding,

    increasing coverage, debugging and applied on device drivers, system utilities, file parsers, distributed systems,
  3. Automated Software Testing Symbolic execution is used for bug finding,

    increasing coverage, debugging and applied on device drivers, system utilities, file parsers, distributed systems, interpreted programs Today
  4. Symbolic Execution int foo(int x) { if (x > 10)

    { return 2*x; } x = x + 1; if (x > 5) { return 3*x; } else { return x; } }
  5. Symbolic Execution int foo(int x) { if (x > 10)

    { return 2*x; } x = x + 1; if (x > 5) { return 3*x; } else { return x; } } x⟵λ
  6. λ>10 λ≤10 Symbolic Execution int foo(int x) { if (x

    > 10) { return 2*x; } x = x + 1; if (x > 5) { return 3*x; } else { return x; } } x⟵λ
  7. λ>10 λ≤10 Symbolic Execution int foo(int x) { if (x

    > 10) { return 2*x; } x = x + 1; if (x > 5) { return 3*x; } else { return x; } } ret 2λ x⟵λ x⟵λ+1
  8. λ+1>5 λ>10 λ≤10 Symbolic Execution int foo(int x) { if

    (x > 10) { return 2*x; } x = x + 1; if (x > 5) { return 3*x; } else { return x; } } ret 2λ ret λ+1 λ+1≤5 x⟵λ x⟵λ+1 ret 3(λ+1)
  9. Test case: λ = 6 (λ≤10)∧(λ+1>5) λ+1>5 λ>10 λ≤10 Symbolic

    Execution int foo(int x) { if (x > 10) { return 2*x; } x = x + 1; if (x > 5) { return 3*x; } else { return x; } } ret 2λ ret λ+1 λ+1≤5 Test cases for bug finding and statement coverage x⟵λ x⟵λ+1 ret 3(λ+1)
  10. Programming Languages Symbolic Execution Engines Java Bytecode LLVM x86 ARM

    Scala Java C# C C++ Compiled BitBlaze KLEE JPF SAGE S2E
  11. Programming Languages Symbolic Execution Engines Java Bytecode LLVM x86 ARM

    Scala Java C# C C++ Python Ruby Lua JavaScript Bash Perl Compiled BitBlaze KLEE JPF SAGE S2E
  12. Programming Languages Symbolic Execution Engines Java Bytecode LLVM x86 ARM

    Scala Java C# C C++ Python Ruby Lua JavaScript Bash Perl Compiled BitBlaze KLEE JPF SAGE S2E ?
  13. def parse_file(file_name): with open(file_name, "r") as f: data = f.read()

    return json.loads(data, encoding="utf-8") Interpreted Languages
  14. def parse_file(file_name): with open(file_name, "r") as f: data = f.read()

    return json.loads(data, encoding="utf-8") Interpreted Languages Complex semantics Complete File Read
  15. def parse_file(file_name): with open(file_name, "r") as f: data = f.read()

    return json.loads(data, encoding="utf-8") Interpreted Languages Complex semantics + Ambiguity in specifications Complete File Read Incomplete Specification
  16. def parse_file(file_name): with open(file_name, "r") as f: data = f.read()

    return json.loads(data, encoding="utf-8") Interpreted Languages Complex semantics + Ambiguity in specifications + Evolving language Since Python 2.5 Complete File Read Incomplete Specification
  17. def parse_file(file_name): with open(file_name, "r") as f: data = f.read()

    return json.loads(data, encoding="utf-8") Interpreted Languages Complex semantics + Ambiguity in specifications + Evolving language + Large standard library Since Python 2.5 Complete File Read Incomplete Specification
  18. def parse_file(file_name): with open(file_name, "r") as f: data = f.read()

    return json.loads(data, encoding="utf-8") Interpreted Languages Complex semantics + Ambiguity in specifications + Evolving language + Large standard library + Widespread native methods Since Python 2.5 Complete File Read Incomplete Specification
  19. def parse_file(file_name): with open(file_name, "r") as f: data = f.read()

    return json.loads(data, encoding="utf-8") Interpreted Languages Complex semantics + Ambiguity in specifications + Evolving language + Large standard library + Widespread native methods Since Python 2.5 Complete File Read Incomplete Specification Significant Engineering Effort
  20. “Consequently, if you were coming from Mars and tried to

    re-implement Python from this document alone, you might have to guess things and in fact you would probably end up implementing quite a different language.” - The Python Language Reference
  21. Symbolic Execution Engine for Language X CHEF Key idea: Use

    the language interpreter as executable specification Language X Interpreter
  22. Symbolic Execution Engine for Language X CHEF Program + Symbolic

    Tests Test Cases Key idea: Use the language interpreter as executable specification Language X Interpreter
  23. Chef Overview • Built on top of the S2E symbolic

    execution engine for x86 • Relies on lightweight interpreter instrumentation + optimizations • Prototyped engines for Python and Lua in 5 + 3 person-days
  24. Testing Interpreted Programs def validateEmail(email): pos = email.find("@") if pos

    < 1: raise InvalidEmailError() if email.rfind(".") < pos: raise InvalidEmailError() Naive approach: Run interpreter in a stock symbolic execution engine
  25. Testing Interpreted Programs def validateEmail(email): pos = email.find("@") if pos

    < 1: raise InvalidEmailError() if email.rfind(".") < pos: raise InvalidEmailError() Naive approach: Run interpreter in a stock symbolic execution engine Python Interpreter ./python program.py
  26. Testing Interpreted Programs def validateEmail(email): pos = email.find("@") if pos

    < 1: raise InvalidEmailError() if email.rfind(".") < pos: raise InvalidEmailError() x86 Symbolic Execution Engine (S2E) Naive approach: Run interpreter in a stock symbolic execution engine Python Interpreter ./python program.py
  27. Py_LOCAL_INLINE(Py_ssize_t) fastsearch(const STRINGLIB_CHAR* s, Py_ssize_t n, const STRINGLIB_CHAR* p, Py_ssize_t

    m, Py_ssize_t maxcount, int mode) { unsigned long mask; Py_ssize_t skip, count = 0; Py_ssize_t i, j, mlast, w; w = n - m; if (w < 0 || (mode == FAST_COUNT && maxcount == 0)) return -1; /* look for special cases */ if (m <= 1) { pos = email.find("@") Naive approach: Run interpreter in a stock symbolic execution engine
  28. STRINGLIB_BLOOM_ADD(mask, p[i]); if (p[i] == p[0]) skip = i -

    1; } for (i = w; i >= 0; i--) { if (s[i] == p[0]) { /* candidate match */ for (j = mlast; j > 0; j--) if (s[i+j] != p[j]) break; if (j == 0) /* got a match! */ return i; /* miss: check if previous character is part of if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) i = i - m; else i = i - skip; } else { /* skip: check if previous character is part of if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) i = i - m; } } } if (mode != FAST_COUNT) pos = email.find("@") Naive approach: Run interpreter in a stock symbolic execution engine
  29. STRINGLIB_BLOOM_ADD(mask, p[i]); if (p[i] == p[0]) skip = i -

    1; } for (i = w; i >= 0; i--) { if (s[i] == p[0]) { /* candidate match */ for (j = mlast; j > 0; j--) if (s[i+j] != p[j]) break; if (j == 0) /* got a match! */ return i; /* miss: check if previous character is part of if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) i = i - m; else i = i - skip; } else { /* skip: check if previous character is part of if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) i = i - m; } } } if (mode != FAST_COUNT) pos = email.find("@") Naive approach: Run interpreter in a stock symbolic execution engine Path Explosion
  30. STRINGLIB_BLOOM_ADD(mask, p[i]); if (p[i] == p[0]) skip = i -

    1; } for (i = w; i >= 0; i--) { if (s[i] == p[0]) { /* candidate match */ for (j = mlast; j > 0; j--) if (s[i+j] != p[j]) break; if (j == 0) /* got a match! */ return i; /* miss: check if previous character is part of if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) i = i - m; else i = i - skip; } else { /* skip: check if previous character is part of if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) i = i - m; } } } if (mode != FAST_COUNT) pos = email.find("@") Gets lost in the details of the implementation Naive approach: Run interpreter in a stock symbolic execution engine Path Explosion
  31. High-level Execution Paths def validateEmail(email): pos = email.find("@") if pos

    < 1: raise InvalidEmailError() if email.rfind(".") < pos: raise InvalidEmailError() High-level execution tree
  32. High-level Execution Paths def validateEmail(email): pos = email.find("@") if pos

    < 1: raise InvalidEmailError() if email.rfind(".") < pos: raise InvalidEmailError() High-level execution tree Low-level (x86) execution tree
  33. High-level Execution Paths def validateEmail(email): pos = email.find("@") if pos

    < 1: raise InvalidEmailError() if email.rfind(".") < pos: raise InvalidEmailError() High-level execution tree Low-level (x86) execution tree
  34. High-level Execution Paths def validateEmail(email): pos = email.find("@") if pos

    < 1: raise InvalidEmailError() if email.rfind(".") < pos: raise InvalidEmailError() High-level execution tree Low-level (x86) execution tree
  35. High-level Execution Paths def validateEmail(email): pos = email.find("@") if pos

    < 1: raise InvalidEmailError() if email.rfind(".") < pos: raise InvalidEmailError() HL/LL path ratio is low due to path explosion 3 HL paths 10 LL paths High-level execution tree Low-level (x86) execution tree
  36. High-level Execution Paths Fork (low-level) Divergence (high-level) High-level fork points

    are unpredictable Alternative approach: Select states at high-level branches
  37. Reducing Path Explosion Fork points clustered in hot spots Program

    “Fork bomb” (e.g., input dependent loop) Low High Selection probability Global DFS / BFS / randomized strategy
  38. Reducing Path Explosion Fork points clustered in hot spots Clusters

    grow bigger 㱺 Slower overall progress Program “Fork bomb” (e.g., input dependent loop) Low High Selection probability Global DFS / BFS / randomized strategy
  39. Reducing Path Explosion Fork points clustered in hot spots Clusters

    grow bigger 㱺 Slower overall progress Program “Fork bomb” (e.g., input dependent loop) Low High Selection probability Reduced state diversity Global DFS / BFS / randomized strategy
  40. Reducing Path Explosion Program Idea: Partition the state space into

    groups Select group Select state from group
  41. Reducing Path Explosion Program Idea: Partition the state space into

    groups Select group Select state from group Faster progress across all groups
  42. Reducing Path Explosion Program Idea: Partition the state space into

    groups Select group Select state from group Faster progress across all groups Increased state diversity
  43. Partitioning High-level Paths High-level Instruction (Bytecode Instruction) Low-level x86 PC

    High-level Program Counter 1st CUPA Class 2nd CUPA Class Reconstruct high-level execution tree
  44. CUPA Classes 1. High-level PC • Uniform HL instruction exploration

    • Obtained via instrumentation 2. x86 PC • Uniform native method exploration • Approximated as the PC of fork point Coverage-optimized CUPA in the paper
  45. switch (opcode) { case LOAD: ... case STORE: ... case

    CALL_FUNCTION: ... ... } hlpc++; } Interpreter Loop Instrumentation while (true) { fetch_instr(hlpc, &opcode, &params);
  46. switch (opcode) { case LOAD: ... case STORE: ... case

    CALL_FUNCTION: ... ... } hlpc++; } Interpreter Loop Instrumentation while (true) { fetch_instr(hlpc, &opcode, &params); Reconstruct high-level execution tree and CFG chef_log_hlpc(hlpc, opcode);
  47. Interpreter Optimizations static long string_hash(PyStringObject *a) { #ifdef SYMBEX_HASHES return

    0; #else register Py_ssize_t len; register unsigned char *p; register long x; len = Py_SIZE(a); p = (unsigned char *) a->ob_sval; x = _Py_HashSecret.prefix; x ^= *p << 7; while (--len >= 0) x = (1000003*x) ^ *p++; x ^= Py_SIZE(a); x ^= _Py_HashSecret.suffix; if (x == -1) x = -2; return x; #endif } Hash neutralization
  48. Interpreter Optimizations • Simple changes to interpreter source static long

    string_hash(PyStringObject *a) { #ifdef SYMBEX_HASHES return 0; #else register Py_ssize_t len; register unsigned char *p; register long x; len = Py_SIZE(a); p = (unsigned char *) a->ob_sval; x = _Py_HashSecret.prefix; x ^= *p << 7; while (--len >= 0) x = (1000003*x) ^ *p++; x ^= Py_SIZE(a); x ^= _Py_HashSecret.suffix; if (x == -1) x = -2; return x; #endif } Hash neutralization
  49. Interpreter Optimizations • Simple changes to interpreter source • “Anti-optimizations”

    in linear performance... static long string_hash(PyStringObject *a) { #ifdef SYMBEX_HASHES return 0; #else register Py_ssize_t len; register unsigned char *p; register long x; len = Py_SIZE(a); p = (unsigned char *) a->ob_sval; x = _Py_HashSecret.prefix; x ^= *p << 7; while (--len >= 0) x = (1000003*x) ^ *p++; x ^= Py_SIZE(a); x ^= _Py_HashSecret.suffix; if (x == -1) x = -2; return x; #endif } Hash neutralization
  50. Interpreter Optimizations • Simple changes to interpreter source • “Anti-optimizations”

    in linear performance... • ... but exponential gains in symbolic mode static long string_hash(PyStringObject *a) { #ifdef SYMBEX_HASHES return 0; #else register Py_ssize_t len; register unsigned char *p; register long x; len = Py_SIZE(a); p = (unsigned char *) a->ob_sval; x = _Py_HashSecret.prefix; x ^= *p << 7; while (--len >= 0) x = (1000003*x) ^ *p++; x ^= Py_SIZE(a); x ^= _Py_HashSecret.suffix; if (x == -1) x = -2; return x; #endif } Hash neutralization
  51. Program + Symbolic Tests Symbolic Execution Engine for Language X

    Chef Summary Language X Interpreter (+instrumentation) CHEF API HL Tree Reconstr. CUPA State Selection S2E x86 Symbolic Execution CHEF
  52. Program + Symbolic Tests Symbolic Execution Engine for Language X

    Chef Summary Language X Interpreter (+instrumentation) CHEF API HL Tree Reconstr. CUPA State Selection S2E x86 Symbolic Execution CHEF
  53. Evaluation Questions How does a Chef-obtained engine... • ... work

    for test case generation? • ... benefit from CUPA and optimizations? • ... compare to a dedicated implementation?
  54. Using a Chef Engine class ArgparseTest(SymbolicTest): def setUp(self): self.argparse =

    import_module("argparse") def runTest(self): parser = self.argparse.ArgumentParser() arg_name = self.getSymString(size=3) arg_value = self.getSymString(size=3) parser.add_argument(arg_name) args = parser.parse_args([arg_value])
  55. Using a Chef Engine class ArgparseTest(SymbolicTest): def setUp(self): self.argparse =

    import_module("argparse") def runTest(self): parser = self.argparse.ArgumentParser() arg_name = self.getSymString(size=3) arg_value = self.getSymString(size=3) parser.add_argument(arg_name) args = parser.parse_args([arg_value])
  56. Using a Chef Engine class ArgparseTest(SymbolicTest): def setUp(self): self.argparse =

    import_module("argparse") def runTest(self): parser = self.argparse.ArgumentParser() arg_name = self.getSymString(size=3) arg_value = self.getSymString(size=3) parser.add_argument(arg_name) args = parser.parse_args([arg_value])
  57. Using a Chef Engine class ArgparseTest(SymbolicTest): def setUp(self): self.argparse =

    import_module("argparse") def runTest(self): parser = self.argparse.ArgumentParser() arg_name = self.getSymString(size=3) arg_value = self.getSymString(size=3) parser.add_argument(arg_name) args = parser.parse_args([arg_value])
  58. Using a Chef Engine class ArgparseTest(SymbolicTest): def setUp(self): self.argparse =

    import_module("argparse") def runTest(self): parser = self.argparse.ArgumentParser() arg_name = self.getSymString(size=3) arg_value = self.getSymString(size=3) parser.add_argument(arg_name) args = parser.parse_args([arg_value]) CHEF Symbolic Test Library Program
  59. Testing Python Packages xlrd simplejson argparse HTMLParser ConfigParser unicodecsv 6

    Popular Packages 10.9K lines of Python code 30 min. / package > 7,000 tests generated 4 undocumented exceptions found
  60. Testing Python Packages xlrd simplejson argparse HTMLParser ConfigParser unicodecsv 6

    Popular Packages 10.9K lines of Python code 30 min. / package > 7,000 tests generated 4 undocumented exceptions found High bug finding potential for dynamic languages
  61. xlrd simplejson argparse HTMLParser ConfigParser unicodecsv Efficiency Package 0.1 1

    10 100 1000 10000 Path Ratio (P / PBaseline) CUPA + Optimizations Baseline
  62. xlrd simplejson argparse HTMLParser ConfigParser unicodecsv Efficiency Package 0.1 1

    10 100 1000 10000 Path Ratio (P / PBaseline) CUPA + Optimizations Optimizations Only CUPA Only Baseline
  63. Comparison to Dedicated Engine • Symbolic execution engine of NICE

    [1] • Targets OpenFlow applications in Python • Case Study: Switch MAC learning algorithm [1] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. “A NICE way to test OpenFlow applications.” NSDI 2012.
  64. Overhead 1 10 100 1000 1 2 3 4 5

    6 7 8 9 10 Size of Symbolic Input [# of Ethernet frames] CHEF Overhead TCHEF /TNICE
  65. Overhead 1 10 100 1000 1 2 3 4 5

    6 7 8 9 10 Size of Symbolic Input [# of Ethernet frames] CHEF Overhead TCHEF /TNICE >100×
  66. Overhead 1 10 100 1000 1 2 3 4 5

    6 7 8 9 10 Size of Symbolic Input [# of Ethernet frames] CHEF Overhead TCHEF /TNICE >100× 5× O ne-tim e Initialization
  67. Overhead 1 10 100 1000 1 2 3 4 5

    6 7 8 9 10 Size of Symbolic Input [# of Ethernet frames] CHEF Overhead TCHEF /TNICE >100× 5× 40× O ne-tim e Initialization x86 Reasoning Overhead (Instructions + Constraints)
  68. Test Cases Chef Engine as Reference Implementation NICE Dedicated Engine

    Missing Paths Duplicate Paths Chef-Python Reference Paths Chef engine’s correctness outweighs performance penalty