Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自然言語処理研究室B3ゼミ_04th
Search
takegue
January 30, 2014
Technology
0
260
自然言語処理研究室B3ゼミ_04th
知識ベースについて
takegue
January 30, 2014
Tweet
Share
More Decks by takegue
See All by takegue
不自然言語の自然言語処理: コード補完を支える最新技術
takegue
1
820
つかわれるプラットフォーム 〜デザイン編〜@DPM#2
takegue
2
12k
カルチャーとエンジニアリングをつなぐ データプラットフォーム
takegue
4
6.2k
toC企業でのデータ活用 (PyData.Okinawa + PythonBeginners沖縄 合同勉強会 2019)
takegue
4
1k
Rettyにおけるデータ活用について
takegue
0
860
Sparse Overcomplete Word Vector Representations
takegue
0
200
Aligning Sentences from Standard Wikipedia to Simple Wikipedia
takegue
0
200
High-Order Low-Rank Tensors for Semantic Role Labeling
takegue
0
120
Dependency-based empty category detection via phrase structure trees
takegue
0
70
Other Decks in Technology
See All in Technology
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
680
AWS Media Services 最新サービスアップデート 2024
eijikominami
0
200
エンジニア人生の拡張性を高める 「探索型キャリア設計」の提案
tenshoku_draft
1
130
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
130
AIチャットボット開発への生成AI活用
ryomrt
0
170
ノーコードデータ分析ツールで体験する時系列データ分析超入門
negi111111
0
410
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
220
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
Terraform Stacks入門 #HashiTalks
msato
0
360
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
390
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
9
1.1k
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
38
7.1k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
How to train your dragon (web standard)
notwaldorf
88
5.7k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
370
Art, The Web, and Tiny UX
lynnandtonic
297
20k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
890
Facilitating Awesome Meetings
lara
50
6.1k
Transcript
自然言語処理研究室 B3 Seminar 2013 年度 第4週 ~知識ベースを利用した自然言語処理システム~ 長岡技術科学大学 B3 竹野
峻輔
• 知識ベース(KB: Knowledge Base) – 知識の検索を可能とし,知識を組織化し,知識をコンピュー タ上に集合させたもの 背景… ×格文法や意味属性だけでは正確に解析できない ×例文ベースだけでは多様性に対応できない
⇒(人間みたいに)一般化された少ない知識を機会に 反映させる必要あり 文法知識,例文知識,一般常識,専門分野知識,文脈知識 … cf.. オントロジー, 概念ベース 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 知識ベースとは
• 知識ベース(KB: Knowledge Base) – 知識の検索を可能とし,知識を組織化し,知識をコンピュー タ上に集合させたもの 背景… ×格文法や意味属性だけでは正確に解析できない ×例文ベースだけでは多様性に対応できない
⇒(人間みたいに)一般化された少ない知識を機会に 反映させる必要あり 文法知識,例文知識,一般常識,専門分野知識,文脈知識 … cf.. オントロジー, 概念ベース 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 知識ベースとは
• 阿折;知識ベースを利用した自然言語処理システム(1994)より 文理解に必要な能力とは…? From Result Driven 1. 大局的文型の理解:SVO, SVOO… connected
NP1 to NP2 2. 語句の修飾の一般化,名詞句の概念レベルの推論 Data Transfer Facility Software … 3. 構成要素関係,所有関係などの関係知識の利用 is-a関係, has-a関係…IBM, HP ∈Company 名詞句のバリエーションは非常に多い≒例文ベースの限界 ※例文ベースを採りいれてしまった方が早い場合もある 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 知識ベースの出発点-文理解に必要な能力- (論文より)
• 知識ベース(文法知識,例文知識,一般常識,専門分野知識,文脈知識)に 必要な技術要素… • 言語知識定義 • 意味属性体系定義,意味制約定義 • 概念階層関係定義 •
常識・分野知識定義 • 文脈知識処理 • 大規模知識アクセス機能 • テキスト現象と知識を結びつける機能 • 推論エンジン • 競合解消機能 • 知識デバッグ機能 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 知識ベースに基づくNLPシステムの要素技術体系(論文より)
• 知識ベース(文法知識,例文知識,一般常識,専門分野知識,文脈知識)に 必要な技術要素… • 言語知識定義 • 意味属性体系定義,意味制約定義 • 概念階層関係定義 •
常識・分野知識定義 • 文脈知識処理 • 大規模知識アクセス機能 • テキスト現象と知識を結びつける機能 • 推論エンジン • 競合解消機能 • 知識デバッグ機能 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 知識ベースに基づくNLPシステムの要素技術体系(論文より) たくさんあります
• cf. エキスパート・システム構築ツール(AI) 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 如何にして一つのシステムにまとめるか?(論文より)
• cf. エキスパート・システム構築ツール(AI) 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 如何にして一つのシステムにまとめるか?(論文より) Akinator
http://jp.akinator.com/ 選択肢を選ぶことで 想像した人,キャラクタ等々を当てる ⇒決定木の学習をしていると(思われる)
• cf. エキスパート・システム構築ツール(AI) 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 如何にして一つのシステムにまとめるか?(論文より) 知識
ベース (可変) 推論 エンジン (固定)
• cf. エキスパート・システム構築ツール(AI) 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 如何にして一つのシステムにまとめるか?(論文より) 知識
ベース (可変) 推論 エンジン (固定)
• cf. エキスパート・システム構築ツール(AI) 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 如何にして一つのシステムにまとめるか?(論文より) 知識
ベース (可変) 推論 エンジン (固定) こっち側は規則に従って 推論するだけ
• cf. エキスパート・システム構築ツール(AI) 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 如何にして一つのシステムにまとめるか?(論文より) 知識
ベース (可変) 推論 エンジン (固定) こっち側は規則に従って 推論するだけ
• cf. エキスパート・システム構築ツール(AI) 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 如何にして一つのシステムにまとめるか?(論文より) 知識
ベース (可変) 推論 エンジン (固定) こっち側の質をあげる
推論 エンジン (固定) • cf. エキスパート・システム構築ツール(AI) 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ
第4週 如何にして一つのシステムにまとめるか?(論文より) 知識 ベース (可変) ・規則の集合 (if ~ then … 集合≃決定木) ・概念階層表現 ・3段論法的知識 ・文法・文型解析ルール ・知識獲得 … →知識適用の確信度 競合解消 ;膨大な組み合わせを 解釈可能なものに絞る
推論 エンジン (固定) • cf. エキスパート・システム構築ツール(AI) 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ
第4週 如何にして一つのシステムにまとめるか?(論文より) 知識 ベース (可変) ・規則の集合 動詞+目的語->動詞句 ($rule ($if ($seq ‘verb’ $obj))($then ($phrase ‘$....)) クライアント ∈ ネットワーク ($def_hi ‘&client’ ’ $comp_of’ &network 0.9)
一般的/多義的な知識は低い確信度 限定的/一意的な知識に高い確信度 この確信度の計算を全ての組み合わせに行うのは不可 能 →ある程度の絞り込みが必要 いつ?どうやって? e.g.) アプリオリ・アルゴリズム(Apriori algorithm;1994) ある知識の組み合わせ
の支持度<知識単体の支持度 ⇒枝切りを行うことで組み合わせ爆発を防ぐ;動的手法 ⇒相関ルールの抽出などに用いられる. 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 知識に対する確信度計算,競合解消 を与える
• 出典:http://enterprisezine.jp/iti/detail/4368 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 質疑応答システム Watsonの例
• 人間の感覚ライクなNLP = 知識ベース + 推論エンジン 知識ベースは規則の集合 含有関係,同値関係,定型句… 質の高い推論には 質の高い大規模な知識ベースが必要
推論エンジンで組み合わせ爆発を抑えるため 競合解消である程度の絞り込いながら解析 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 ここまでのまとめ
• 阿折義三; (1994). 知識ベースを利用した自然言語処理システム. 情報処理学会 研究報告自然言語処理(NL), 28, 57–64. • 「SiriのライバルEvi」
http://nouai.blog.fc2.com/category16-1.html • 「自然言語処理とWatson、ソーシャルデータ活用」をIBM 村上明子氏が語る • http://enterprisezine.jp/iti/detail/4368 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 参考文献
• 半教師アルゴリズム – 知識ベースなどで弱い(Heuristicな)ラベル付された 訓練セット利用 – 2つの概念(Entity)が含まれる表現からは 関係抽出ができる(Is-a関係など) …だろう(Heuristic) 雑音いっぱい⇒精度下がる
• (遠い)関係抽出で使われるアルゴリズム (遠い概念)Distant-(監督、管理)Supervision 根幹:アノテーションされたテキストを使わず(or かなり少 ない)に如何に関係抽出を正確に行うか? ⇒Knowledge Baseを使う: Directlyじゃない限り難しいよね。どうしよ 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 Distant-Supervision Learning Algorithm
1. Factor Gprahを使う。 (概念の相関図:2つの関係があるかないか分かるもの そんでもって、 その関係が文章中にあるか決定できる) 2. 制約付き半教師学習を適用 このときKBに載ってる関係を使わない ⇒
エラーの31%が削減できた。 2014/1/30 自然言語処理研究室 2013年度 B3ゼミ 第4週 Distant-Supervision Learning Algorithm