Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
350
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
630
Other Decks in Technology
See All in Technology
iPadOS18でフローティングタブバーを解除してみた
sansantech
PRO
1
130
なぜfreeeはハブ・アンド・スポーク型の データメッシュアーキテクチャにチャレンジするのか?
shinichiro_joya
2
370
2025年に挑戦したいこと
molmolken
0
150
エンジニアリングマネージャー視点での、自律的なスケーリングを実現するFASTという選択肢 / RSGT2025
yoshikiiida
4
3.6k
JuliaTokaiとJuliaLangJaの紹介 for NGK2025S
antimon2
1
110
実践! ソフトウェアエンジニアリングの価値の計測 ── Effort、Output、Outcome、Impact
nomuson
0
2k
深層学習と3Dキャプチャ・3Dモデル生成(土木学会応用力学委員会 応用数理・AIセミナー)
pfn
PRO
0
460
re:Invent2024 KeynoteのAmazon Q Developer考察
yusukeshimizu
1
130
My small contributions - Fujiwara Tech Conference 2025
ijin
0
1.4k
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
6
54k
WantedlyでのKotlin Multiplatformの導入と課題 / Kotlin Multiplatform Implementation and Challenges at Wantedly
kubode
0
240
自社 200 記事を元に整理した読みやすいテックブログを書くための Tips 集
masakihirose
2
320
Featured
See All Featured
A Tale of Four Properties
chriscoyier
157
23k
RailsConf 2023
tenderlove
29
970
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
240
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
How to Ace a Technical Interview
jacobian
276
23k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3.1k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com