Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
360
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
640
Other Decks in Technology
See All in Technology
ビズリーチが挑む メトリクスを活用した技術的負債の解消 / dev-productivity-con2025
visional_engineering_and_design
3
7.5k
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
27k
IPA&AWSダブル全冠が明かす、人生を変えた勉強法のすべて
iwamot
PRO
2
120
SEQUENCE object comparison - db tech showcase 2025 LT2
nori_shinoda
0
130
第4回Snowflake 金融ユーザー会 Snowflake summit recap
tamaoki
1
280
関数型プログラミングで 「脳がバグる」を乗り越える
manabeai
1
190
OPENLOGI Company Profile
hr01
0
67k
スタートアップに選択肢を 〜生成AIを活用したセカンダリー事業への挑戦〜
nstock
0
170
Core Audio tapを使ったリアルタイム音声処理のお話
yuta0306
0
190
開発生産性を組織全体の「生産性」へ! 部門間連携の壁を越える実践的ステップ
sudo5in5k
2
7k
「クラウドコスト絶対削減」を支える技術—FinOpsを超えた徹底的なクラウドコスト削減の実践論
delta_tech
4
170
LangChain Interrupt & LangChain Ambassadors meetingレポート
os1ma
2
310
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
12k
Producing Creativity
orderedlist
PRO
346
40k
BBQ
matthewcrist
89
9.7k
A designer walks into a library…
pauljervisheath
207
24k
We Have a Design System, Now What?
morganepeng
53
7.7k
Code Review Best Practice
trishagee
69
18k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
A Tale of Four Properties
chriscoyier
160
23k
Embracing the Ebb and Flow
colly
86
4.7k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com