Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
370
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
660
Other Decks in Technology
See All in Technology
大規模プロダクトで実践するAI活用の仕組みづくり
k1tikurisu
4
1.5k
LINEスキマニ/LINEバイトにおけるバックエンド開発
lycorptech_jp
PRO
0
290
【Oracle Cloud ウェビナー】パスワードだけでは守れない時代~多要素認証で強化する企業セキュリティ~
oracle4engineer
PRO
2
100
「もっと正確に、もっと効率的に」ANDPADの写真書き込み機能における、 現場の声を形にしたエンハンス
andpad
0
110
個人から巡るAI疲れと組織としてできること - AI疲れをふっとばせ。エンジニアのAI疲れ治療法 ショートセッション -
kikuchikakeru
4
1.4k
FFMとJVMの実装から学ぶJavaのインテグリティ
kazumura
0
130
ソフトウェア開発現代史: 55%が変化に備えていない現実 ─ AI支援型開発時代のReboot Japan #agilejapan
takabow
7
4.4k
Rubyist入門: The Way to The Timeless Way of Programming
snoozer05
PRO
7
510
生成AIではじめるテスト駆動開発
puku0x
0
120
Dart and Flutter MCP serverで実現する AI駆動E2Eテスト整備と自動操作
yukisakai1225
0
560
明日から真似してOk!NOT A HOTELで実践している入社手続きの自動化
nkajihara
1
810
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
4
1.4k
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
GraphQLとの向き合い方2022年版
quramy
49
14k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Making Projects Easy
brettharned
120
6.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
How STYLIGHT went responsive
nonsquared
100
5.9k
Done Done
chrislema
186
16k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com