Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
360
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
650
Other Decks in Technology
See All in Technology
キャリアを支え組織力を高める「多層型ふりかえり」 / 20250821 Kazuki Mori
shift_evolve
PRO
2
300
ABEMAにおける 生成AI活用の現在地 / The Current Status of Generative AI at ABEMA
dekatotoro
0
650
あなたの知らない OneDrive
murachiakira
0
240
株式会社ARAV 採用案内
maqui
0
340
EKS Pod Identity における推移的な session tags
z63d
1
200
ECS モニタリング手法大整理
yendoooo
1
120
ZOZOTOWNフロントエンドにおけるディレクトリの分割戦略
zozotech
PRO
16
5.2k
新規案件の立ち上げ専門チームから見たAI駆動開発の始め方
shuyakinjo
0
110
新卒(ほぼ)専業Kagglerという選択肢
nocchi1
1
2.2k
Go で言うところのアレは TypeScript で言うとコレ / Kyoto.なんか #7
susisu
5
1.6k
事業価値と Engineering
recruitengineers
PRO
1
200
第4回 関東Kaggler会 [Training LLMs with Limited VRAM]
tascj
12
1.7k
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Fireside Chat
paigeccino
39
3.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Thoughts on Productivity
jonyablonski
69
4.8k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.5k
For a Future-Friendly Web
brad_frost
179
9.9k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com