Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
350
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
630
Other Decks in Technology
See All in Technology
30→150人のエンジニア組織拡大に伴うアジャイル文化を醸成する役割と取り組みの変化
nagata03
0
380
いまからでも遅くない!コンテナでWebアプリを動かしてみよう!コンテナハンズオン編
nomu
0
190
ABWG2024採択者が語るエンジニアとしての自分自身の見つけ方〜発信して、つながって、世界を広げていく〜
maimyyym
1
230
プロダクト開発者目線での Entra ID 活用
sansantech
PRO
0
170
2025/3/1 公共交通オープンデータデイ2025
morohoshi
0
110
Охота на косуль у древних
ashapiro
0
130
生成AI×財務経理:PoCで挑むSlack AI Bot開発と現場巻き込みのリアル
pohdccoe
1
840
【Snowflake九州ユーザー会#2】BigQueryとSnowflakeを比較してそれぞれの良し悪しを掴む / BigQuery vs Snowflake: Pros & Cons
civitaspo
4
1.4k
Global Databaseで実現するマルチリージョン自動切替とBlue/Greenデプロイ
j2yano
0
180
目標と時間軸 〜ベイビーステップでケイパビリティを高めよう〜
kakehashi
PRO
8
1.1k
どうすると生き残れないのか/how-not-to-survive
hanhan1978
2
990
20250307_エンジニアじゃないけどAzureはじめてみた
ponponmikankan
2
200
Featured
See All Featured
The Cult of Friendly URLs
andyhume
78
6.2k
We Have a Design System, Now What?
morganepeng
51
7.4k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
390
Statistics for Hackers
jakevdp
797
220k
A Modern Web Designer's Workflow
chriscoyier
693
190k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
52k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Automating Front-end Workflow
addyosmani
1369
200k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com