Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Geoff Wagstaff
October 18, 2013
Technology
1
370
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
670
Other Decks in Technology
See All in Technology
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
230
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
160
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
330
Agile Leadership Summit Keynote 2026
m_seki
1
640
OpenShiftでllm-dを動かそう!
jpishikawa
0
120
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
260
20260204_Midosuji_Tech
takuyay0ne
1
160
配列に見る bash と zsh の違い
kazzpapa3
3
160
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
プロポーザルに込める段取り八分
shoheimitani
1
290
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
77
5.3k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Embracing the Ebb and Flow
colly
88
5k
Exploring anti-patterns in Rails
aemeredith
2
250
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
430
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
Discover your Explorer Soul
emna__ayadi
2
1.1k
Amusing Abliteration
ianozsvald
0
100
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
100
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com