Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
プログラミング言語 Tlangの開発
Search
tkclimb
May 05, 2020
Technology
0
640
プログラミング言語 Tlangの開発
2020年のGWハッカソンで発表した内容です。
tkclimb
May 05, 2020
Tweet
Share
More Decks by tkclimb
See All by tkclimb
コンピューティングの基礎と高速化入門
tkclimb
17
9.4k
Other Decks in Technology
See All in Technology
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
170
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
120
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
2
210
AI駆動開発の実践とその未来
eltociear
1
460
特別捜査官等研修会
nomizone
0
520
コンテキスト情報を活用し個社最適化されたAI Agentを実現する4つのポイント
kworkdev
PRO
1
1.8k
Amazon Quick Suite で始める手軽な AI エージェント
shimy
1
1.5k
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
620
LayerX QA Night#1
koyaman2
0
170
【ServiceNow SNUG Meetup LT deck】WorkFlow Editorの廃止と Flow Designerへの移行戦略
niwato
0
120
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
360
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
190
Featured
See All Featured
Six Lessons from altMBA
skipperchong
29
4.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Building Applications with DynamoDB
mza
96
6.8k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
How to Ace a Technical Interview
jacobian
281
24k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
66
The SEO Collaboration Effect
kristinabergwall1
0
300
Paper Plane
katiecoart
PRO
0
44k
Producing Creativity
orderedlist
PRO
348
40k
Transcript
ϓϩάϥϛϯάݴޠ Tlangͷ։ൃ Takato Yamada
͍͖ͳΓͰ͕͢ɺ ϓϩάϥϜΛߴԽେมͰ͢
΅͔͠ॲཧ (ߴԽͳ͠)
΅͔͠ॲཧ (खͰߴԽ)
΅͔͠ॲཧ (HalideͰߴԽ)
΅͔͠ॲཧ (HalideͰߴԽ) ·ͩਓखͰߴԽ (εέδϡʔϦϯά)͕ඞཁ
Tlang (Tensor language) ͱ • ΞϓϦέʔγϣϯࢥߟͳςϯιϧϕʔεɺϓϩάϥϛϯάݴޠ • ΞϧΰϦζϜͱεέδϡʔϦϯάΛͯ͠ॻ͚Δ • εέδϡʔϦϯάΛࣗಈͰߦ͑Δ
(ͪΖΜखॻ͖Ͱ͖Δ) • ϔςϩδχΞεͳڥͰಈ͖ɺϢʔβࠩҟΛҙࣝ͠ͳͯ͘ྑ͍ • ϞμϯͳϓϩάϥϛϯάݴޠͰ࣮͢Δ͜ͱͰՄಡੑɺ։ൃޮΛվળ • هड़ՄೳͳυϝΠϯΛը૾ॲཧσΟʔϓϥʔχϯά͚ͩͰͳͯ͘ɺ HPC·Ͱ͍͛ͨ
ࠩผԽ • Tlang: ։ൃݴޠ͕Ϟμϯ(Swift, Rust)ɺϧʔϓൖґଘ͕هड़ՄೳͳϧʔϓϨϕϧDSL ΦʔτνϡʔχϯάΛࡌ ࢄܭࢉܭࢉΧʔωϧͷඇಉظ࣮ߦʹରԠ͢Δ (શͯئ) • Tensorflow,
Pytorch: ։ൃݴޠ͕C++ ɺϧʔϓϨϕϧهड़Ͱ͖ͳ͍ (XLAՄೳ?) • Halide: ։ൃݴޠ͕C++ɺϧʔϓൖґଘ͕ॻ͚ͳ͍(ϑϩϯτΤϯυͰ)ɺ Φʔτνϡʔχϯάͦ͜·Ͱڧ͘ͳ͍ɺࢄܭࢉͰ͖ͳ͍ • TVM: ։ൃݴޠ͕C++ͱPythonɺϧʔϓൖґଘ͕ॻ͚ͳ͍ɺࢄܭࢉͰ͖ͳ͍ • Tiramisu: ։ൃݴޠ͕C++ɺΦʔτνϡʔχϯά͕ͳ͍
• Tlang: ։ൃݴޠ͕Ϟμϯ(Swift, Rust)ɺϧʔϓൖґଘ͕هड़ՄೳͳϧʔϓϨϕϧDSL ΦʔτνϡʔχϯάΛࡌ ࢄܭࢉܭࢉΧʔωϧͷඇಉظ࣮ߦʹରԠ͢Δ (શͯئ) • Tensorflow, Pytorch:
։ൃݴޠ͕C++ ɺϧʔϓϨϕϧهड़Ͱ͖ͳ͍ (XLAՄೳ?) • Halide: ։ൃݴޠ͕C++ɺϧʔϓൖґଘ͕ॻ͚ͳ͍(ϑϩϯτΤϯυͰ)ɺ Φʔτνϡʔχϯάͦ͜·Ͱڧ͘ͳ͍ɺࢄܭࢉͰ͖ͳ͍ • TVM: ։ൃݴޠ͕C++ͱPythonɺϧʔϓൖґଘ͕ॻ͚ͳ͍ɺࢄܭࢉͰ͖ͳ͍ • Tiramisu: ։ൃݴޠ͕C++ɺΦʔτνϡʔχϯά͕ͳ͍ ࠩผԽ (স) ݸਓͰશͯΛ࣮͢Δ͜ͱ΄΅ෆՄೳ. ݁ہͷॴͳʹ͔࡞Γ͍͚ͨͩস
ϥ ϯ λ Π Ϝ ߏ ؔܕελΠϧ ϑϩϯτΤϯυ ίʔυੜ LLVM
ݴޠϑϩϯτΤϯυ ߴϨϕϧ IR ࠷దԽػ 1 Ϩϕϧ IR ࠷దԽػ 2 GPU CPU ࢄ ୯Ұ ࣗಈ࠷దԽػ ϥ Π ϒ ϥ Ϧ
ؔܕελΠϧ ϑϩϯτΤϯυ ίʔυੜ ݴޠϑϩϯτΤϯυ ߴϨϕϧ IR ࠷దԽػ 1 Ϩϕϧ IR
࠷దԽػ 2 ࣗಈ࠷దԽػ ߏ ϥ ϯ λ Π Ϝ ϥ Π ϒ ϥ Ϧ LLVM GPU CPU ࢄ ୯Ұ
ϥ ϯ λ Π Ϝ ϥ Π ϒ ϥ Ϧ
ؔܕελΠϧ ϑϩϯτΤϯυ ίʔυੜ ݴޠϑϩϯτΤϯυ ߴϨϕϧ IR ࠷దԽػ 1 Ϩϕϧ IR ࠷దԽػ 2 ࣗಈ࠷దԽػ ͜͜ΛՃ͍ͨ͠! ݟੵΓ LLVM GPU CPU ࢄ ୯Ұ
ϥ ϯ λ Π Ϝ ϥ Π ϒ ϥ Ϧ
ؔܕελΠϧ ϑϩϯτΤϯυ ίʔυੜ ݴޠϑϩϯτΤϯυ ߴϨϕϧ IR ࠷దԽػ 1 Ϩϕϧ IR ࠷దԽػ 2 ࣗಈ࠷దԽػ ͕͜͜ݮͬͨ ݁Ռ LLVM GPU CPU ࢄ ୯Ұ
• ࢀߟϓϩδΣΫτΛॻ͖͍ͯͨ͠ॴɺDeep copy͕Ͱ͖ͳ͍͜ͱ ͕͔ͬͨ →ίϯύΠϥͷIRϥϕϧ͖༗ޮάϥϑͰද͞Ε͍ͯΔ͕ɺάϥ ϑΛίϐʔ͢ΔͨΊʹɺઌߦΛશͯίϐʔ͠ͳ͍ͱ͍͚ͳ͍… • ϊʔυͷछྨ͕ଟ͍͠ɺࠓޙ૿͑Δͷख࣮େม ࣗಈͰੜͯ͠Ζ͏! ͑ͬͳʹͬͯͨͷʁ
• ࢀߟϓϩδΣΫτΛॻ͖͍ͯͨ͠ॴɺDeep copy͕Ͱ͖ͳ͍͜ͱ ͕͔ͬͨ →ίϯύΠϥͷIRϥϕϧ͖༗ޮάϥϑͰද͞Ε͍ͯΔ͕ɺάϥ ϑΛίϐʔ͢ΔͨΊʹɺઌߦΛશͯίϐʔ͠ͳ͍ͱ͍͚ͳ͍… • ϊʔυͷछྨ͕ଟ͍͠ɺࠓޙ૿͑Δͷख࣮େม ࣗಈͰੜͯ͠Ζ͏! ͑ͬͳʹͬͯͨͷʁ
ѱເͷ࢝·Γ
ͱΓ͋͑ͣਐḿ D {Add(C[Var(i), Var(j)], {C {Add(A[Var(i), Var(j)], {Input(A)}, B[Var(i), Var(j)],
{Input(B)})}}, IntConst(3))}
ίʔυΛੜ͢ΔͨΊͷίʔυ(ίϯύΠϥ)Λ ੜ͢ΔίʔυΛॻ͘৬ਓʹͳΓ·ͨ͠ ݁