Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高スループット・低レイテンシを実現する技術
Search
tokku5552
September 01, 2023
Technology
3
8.1k
高スループット・低レイテンシを実現する技術
https://cyberagent.connpass.com/event/291186/
tokku5552
September 01, 2023
Tweet
Share
More Decks by tokku5552
See All by tokku5552
Google CloudとAWSのコンテナ実行環境比較
tokku5552
0
140
AWS CDKのススメ
tokku5552
1
450
Messaging APIのメッセージオブジェクトを検証できるChrome拡張機能を作った話
tokku5552
1
110
FlutterにLINEログインを仕込んで通知メッセージを送る
tokku5552
2
860
AWS CDK × Reactでliffをつくる
tokku5552
1
480
Flutterで単体テストを行う方法とGitHub Actionsを使った自動化
tokku5552
1
83
ネットワーク基礎 - WEBページが表示されるまで
tokku5552
1
230
インフラエンジニアのお仕事(オンプレ)
tokku5552
0
110
hooks riverpod + state notifier + freezed でのドメイン駆動設計
tokku5552
0
340
Other Decks in Technology
See All in Technology
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
110
スクラムチームを立ち上げる〜チーム開発で得られたもの・得られなかったもの〜
ohnoeight
2
350
Taming you application's environments
salaboy
0
180
Engineer Career Talk
lycorp_recruit_jp
0
120
SREによる隣接領域への越境とその先の信頼性
shonansurvivors
2
510
New Relicを活用したSREの最初のステップ / NRUG OKINAWA VOL.3
isaoshimizu
2
580
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
120
第1回 国土交通省 データコンペ参加者向け勉強会③- Snowflake x estie編 -
estie
0
120
いざ、BSC討伐の旅
nikinusu
2
780
AWS Lambdaと歩んだ“サーバーレス”と今後 #lambda_10years
yoshidashingo
1
170
Making your applications cross-environment - OSCG 2024 NA
salaboy
0
180
ISUCONに強くなるかもしれない日々の過ごしかた/Findy ISUCON 2024-11-14
fujiwara3
8
870
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
How to Ace a Technical Interview
jacobian
276
23k
4 Signs Your Business is Dying
shpigford
180
21k
Ruby is Unlike a Banana
tanoku
97
11k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Automating Front-end Workflow
addyosmani
1366
200k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
A designer walks into a library…
pauljervisheath
203
24k
Transcript
高スループット・低レイテンシを実現する技術 株式会社CyberAgent AI事業本部 徳田真之介
自己紹介 • 徳田真之介(@tokkuu) • 略歴 ◦ 2023/05 〜
▪ CyberAgent AI事業本部 ◦ 2021/10 - 2023/04 ▪ ミロゴス株式会社(Web系) ◦ 2017/04 - 2021/09 ▪ 日鉄日立システムエンジニアリング(SIer) • 好きな技術 ◦ TypeScript/Next.js/AWS/Golang/Terraform/Flutter • 趣味 ◦ バンド(ex. ggrks) ◦ 娘 ◦ ディズニーランド
RTBの仕組みをおさらい
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 • どのキャンペーンの広告をいくらで 出すのか? • 入札したあと、勝ったのか?それを 見たのか?クリックしたのか?
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用 ・ユーザー情報から候補となる広告を選定 ・ユーザーの属性に合わせて入札額を決定 ・入札額と広告内容をSSPへ応答
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用 ・どのキャンペーンの広告が見られたかを計測 ・消化額++ ・予算に到達していたらストップ
アーキテクチャ概観
None
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
bid処理を高速化する
None
bid処理の基本構成と高速化 • 使用言語はGolang • 標準出力をfluentdでKinesis Data Streams->Kinesis Data Firehose->S3へと流している •
Auroraにあるマスタデータはインメ モリキャッシュへ • DynamoDBへの情報はMemcached などを挟んで取得
bid処理の基本構成と高速化 • 使用言語はGolang • 標準出力をfluentdでKinesis Data Streams->Kinesis Data Firehose->S3へと流している •
Auroraにあるマスタデータはインメ モリキャッシュへ • DynamoDBへの情報はMemcached などを挟んで取得 多段キャッシュでread処理を高速化 出力は標準出力のみ
imp処理の高速化 • impではDynamoDBへの書き込みが発生する • DynamoDBにそのまま書き込んでもある程度耐えられるはずだが、bidレスポンスほどの即時性 は必要ないため、SQSを挟んで非同期化
最適化ロジック周り
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 • どのキャンペーンの広告をいくらで 出すのか? • 入札したあと、勝ったのか?それを 見たのか?クリックしたのか?
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
最適化ロジック • どの広告をいくらで出すのかを決めるため に、配信実績をもとに定期的にパラメーターを 更新している • 配信実績はS3のログからSFnのworkflowでリ フレッシュをかけてSnowflakeに保存 •
DynamoDBへテーブルを分けてユーザー毎、 広告毎に一意にパラメーターが取得できる
まとめ • read処理はインメモリ→ memcached/redis → Aurora/DynamoDBと多段にキャッシュすることで 高速化 • writeが必要な処理はSQSを使って非同期化
• 複雑なロジックが必要な部分のうち、予め計算しておけるところは バッチ処理で計算