Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高スループット・低レイテンシを実現する技術
Search
tokku5552
September 01, 2023
Technology
3
14k
高スループット・低レイテンシを実現する技術
https://cyberagent.connpass.com/event/291186/
tokku5552
September 01, 2023
Tweet
Share
More Decks by tokku5552
See All by tokku5552
他責思考で考える、EMとICの本音
tokku5552
1
130
Google CloudとAWSのコンテナ実行環境比較
tokku5552
0
210
AWS CDKのススメ
tokku5552
1
510
Messaging APIのメッセージオブジェクトを検証できるChrome拡張機能を作った話
tokku5552
1
130
FlutterにLINEログインを仕込んで通知メッセージを送る
tokku5552
2
980
AWS CDK × Reactでliffをつくる
tokku5552
1
550
Flutterで単体テストを行う方法とGitHub Actionsを使った自動化
tokku5552
1
100
ネットワーク基礎 - WEBページが表示されるまで
tokku5552
1
270
インフラエンジニアのお仕事(オンプレ)
tokku5552
0
150
Other Decks in Technology
See All in Technology
【Kaigi on Rails 事後勉強会LT】MeはどうしてGirlsに? 私とRubyを繋いだRail(s)
joyfrommasara
0
270
これがLambdaレス時代のChatOpsだ!実例で学ぶAmazon Q Developerカスタムアクション活用法
iwamot
PRO
8
1.1k
Adminaで実現するISMS/SOC2運用の効率化 〜 アカウント管理編 〜
shonansurvivors
4
450
いまからでも遅くない!SSL/TLS証明書超入門(It's not too late to start! SSL/TLS Certificates: The Absolute Beginner's Guide)
norimuraz
0
260
Simplifying Cloud Native app testing across environments with Dapr and Microcks
salaboy
0
170
リセラー企業のテクサポ担当が考える、生成 AI 時代のトラブルシュート 2025
kazzpapa3
1
360
AWSでAgentic AIを開発するための前提知識の整理
nasuvitz
2
170
20251014_Pythonを実務で徹底的に使いこなした話
ippei0923
0
210
LLMプロダクトの信頼性を上げるには?LLM Observabilityによる、対話型音声AIアプリケーションの安定運用
ivry_presentationmaterials
0
110
防災デジタル分野での官民共創の取り組み (2)DIT/CCとD-CERTについて
ditccsugii
0
300
Node.js 2025: What's new and what's next
ruyadorno
0
360
『バイトル』CTOが語る! AIネイティブ世代と切り拓くモノづくり組織
dip_tech
PRO
1
130
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
How to train your dragon (web standard)
notwaldorf
97
6.3k
The Language of Interfaces
destraynor
162
25k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Statistics for Hackers
jakevdp
799
220k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
7.8k
How to Ace a Technical Interview
jacobian
280
24k
Done Done
chrislema
185
16k
Into the Great Unknown - MozCon
thekraken
40
2.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Transcript
高スループット・低レイテンシを実現する技術 株式会社CyberAgent AI事業本部 徳田真之介
自己紹介 • 徳田真之介(@tokkuu) • 略歴 ◦ 2023/05 〜
▪ CyberAgent AI事業本部 ◦ 2021/10 - 2023/04 ▪ ミロゴス株式会社(Web系) ◦ 2017/04 - 2021/09 ▪ 日鉄日立システムエンジニアリング(SIer) • 好きな技術 ◦ TypeScript/Next.js/AWS/Golang/Terraform/Flutter • 趣味 ◦ バンド(ex. ggrks) ◦ 娘 ◦ ディズニーランド
RTBの仕組みをおさらい
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 • どのキャンペーンの広告をいくらで 出すのか? • 入札したあと、勝ったのか?それを 見たのか?クリックしたのか?
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用 ・ユーザー情報から候補となる広告を選定 ・ユーザーの属性に合わせて入札額を決定 ・入札額と広告内容をSSPへ応答
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 ・bid SSPからのリクエストを受けて 入札額を返す ・imp 広告が表示されたら リクエストが来る ・その他 計測用 ・どのキャンペーンの広告が見られたかを計測 ・消化額++ ・予算に到達していたらストップ
アーキテクチャ概観
None
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
bid処理を高速化する
None
bid処理の基本構成と高速化 • 使用言語はGolang • 標準出力をfluentdでKinesis Data Streams->Kinesis Data Firehose->S3へと流している •
Auroraにあるマスタデータはインメ モリキャッシュへ • DynamoDBへの情報はMemcached などを挟んで取得
bid処理の基本構成と高速化 • 使用言語はGolang • 標準出力をfluentdでKinesis Data Streams->Kinesis Data Firehose->S3へと流している •
Auroraにあるマスタデータはインメ モリキャッシュへ • DynamoDBへの情報はMemcached などを挟んで取得 多段キャッシュでread処理を高速化 出力は標準出力のみ
imp処理の高速化 • impではDynamoDBへの書き込みが発生する • DynamoDBにそのまま書き込んでもある程度耐えられるはずだが、bidレスポンスほどの即時性 は必要ないため、SQSを挟んで非同期化
最適化ロジック周り
AD AD AD SSP SSP SSP 秒間 数十万リクエスト に対して 50ms
でレスポンス ・ ・ ・ ・ ・ ・ DSP ユーザー 広告主 キャンペーン1 キャンペーン2 キャンペーン3 ・ ・ ・ 再掲 • どのキャンペーンの広告をいくらで 出すのか? • 入札したあと、勝ったのか?それを 見たのか?クリックしたのか?
• SSPからbidサーバーへ入 札リクエストが飛んでくる • 広告のマスターデータや最 適化パラメータはAuroraや DynamoDBに格納されてお り、これを元に入札額を決定 し、広告データをレスポンス
• 最適化パラメータはパー トナーのユーザー情報DB からS3を経てCA側の Snowflakeで計算し、 DynamoDBに格納
最適化ロジック • どの広告をいくらで出すのかを決めるため に、配信実績をもとに定期的にパラメーターを 更新している • 配信実績はS3のログからSFnのworkflowでリ フレッシュをかけてSnowflakeに保存 •
DynamoDBへテーブルを分けてユーザー毎、 広告毎に一意にパラメーターが取得できる
まとめ • read処理はインメモリ→ memcached/redis → Aurora/DynamoDBと多段にキャッシュすることで 高速化 • writeが必要な処理はSQSを使って非同期化
• 複雑なロジックが必要な部分のうち、予め計算しておけるところは バッチ処理で計算