Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ハイパーパラメータチューニングって何をしているの
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
toridori
November 11, 2024
Technology
0
450
ハイパーパラメータチューニングって何をしているの
toridori
November 11, 2024
Tweet
Share
More Decks by toridori
See All by toridori
Locustでmacから開発環境に負荷試験をしてみた
toridori_dev
0
240
N + 1 問題の概要と Railsにおける解決方法
toridori_dev
0
190
Aurora Cloneで QA環境をつくってみた
toridori_dev
0
280
ニューモーフィズムってどうなの
toridori_dev
0
490
toridori base webをv0で爆速で作った話
toridori_dev
0
230
KoT APIでプチ業務改善を試してみた
toridori_dev
0
520
MUI DataGridProコンポーネントの紹介
toridori_dev
0
730
あの日行ったマージの仕組みを僕達はまだ知らない。
toridori_dev
0
360
DBマイグレーションとORMについて
toridori_dev
0
260
Other Decks in Technology
See All in Technology
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
190
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
490
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
6
1.5k
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
410
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
140
Claude Code for NOT Programming
kawaguti
PRO
1
100
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
120
私たち準委任PdEは2つのプロダクトに挑戦する ~ソフトウェア、開発支援という”二重”のプロダクトエンジニアリングの実践~ / 20260212 Naoki Takahashi
shift_evolve
PRO
2
200
今こそ学びたいKubernetesネットワーク ~CNIが繋ぐNWとプラットフォームの「フラッと」な対話
logica0419
5
400
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
160
(技術的には)社内システムもOKなブラウザエージェントを作ってみた!
har1101
0
180
Featured
See All Featured
We Are The Robots
honzajavorek
0
170
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
65
How STYLIGHT went responsive
nonsquared
100
6k
Faster Mobile Websites
deanohume
310
31k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
57
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
How to make the Groovebox
asonas
2
1.9k
Transcript
ハイパーパラメータチューニング って何をしているの 開発部 井上 2024/10/25
ハイパーパラメータとは
(普通の)パラメータ 線形回帰での例 観測データ が与えられたとき、直線(モデル) が最もフィットするような、適切な値 を求めたい。 このような、データに合わせてモデルの振る舞いを決める値を、モデルのパラメータや重みという。 適切なパラメータを求めることを、学習という。
「適切な」パラメータの定式化 線形回帰での例 どのようなときに「最もフィット」するか? 線形回帰の例では、次の誤差関数を最小化すればよい(いわゆる最小二乗法)。
ハイパーパラメータ Ridge回帰の例 モデルの複雑さを抑えるため(上記の例では、パラメータの絶対値が大きくなりにくくするため)、線 形回帰の誤差関数に対して、次のような罰則項を加えた関数(コスト関数)を考え、この最小化を考え ることがある(Ridge回帰)。 ここでλは、罰則の強さを決める正の実数で、値が大きいほど罰則が強くなる(パラメータは絶対値の大 きな値を取りにくくなる)。 このλは、学習前に事前に決めておくパラメータで、ハイパーパラメータと呼ばれる。
フィットさせたい関数 パラメータ 最小化したい関数 ハイパーパラメータ ここまでのまとめ Ridge回帰の例
実際の例 ハイパーパラメータを変えて学習した例 から生成した点+外れ値に 3つのモデルをフィッティング。 λを大きくすると、 傾きも小さくなっている。 ※αはscikit-learnライブラリで設定する 際のハイパーパラメータの名前で、 λと同じものと考えて大丈夫です ※Ridge回帰は多重共線性への対処に
用いられるのですが、今回は1変数 のため説明を割愛
ハイパーパラメータチューニング
ハイパーパラメータチューニングとは ハイパーパラメータに適切な値はあるの? どうやって決めたらいいの? それを決めるのがハイパーパラメータチューニングです。 ハイパーパラメータチューニングとは
ハイパーパラメータチューニングの定式化 任意のλに対し、コスト関数 を最小化するような を と書くことにする。このとき、誤差関数の値 が最も小さくなるようなλを選択すればよい。 ※本当は評価用のデータセットを分けたりしないといけないのですが、今回は割愛 Ridge回帰の例
ハイパーパラメータチューニングの方法 そのようなハイパーパラメータをどうやって探索すればよいか? あらかじめ決めておいた有限個のリストを探索したり、与えられた範囲からランダムに探索したりする 方法もある。 完全なランダムではなく、いい感じに確率的に探索してくれるのが、ベイズ最適化。 探索の方法
最適化とは 一般に、関数が最小値(あるいは最大値)を取るような値を求めることを最適化という。 ベイズ最適化はブラックボックス最適化の一種で、よく分からない関数でもいい感じに最適化してくれ る。 ベイズ最適化を行ってくれるPythonのライブラリとしては、Optunaが有名。 ベイズ最適化
コード例 このあたりはMLのテンプレなので Optunaのコード例 Optunaで最適化するために 追加するのはこのあたり
おまけ
最適化の応用例 Googleの研究者がチョコチップクッキーのレシピの最適化をしたらしいです: Bayesian Optimization for a Better Dessert レシピ→“美味しさの評価値”という関数の最大化を試みたわけですね。 Googleのチョコチップクッキーレシピ
ご清聴ありがとうございました おわり