Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Transformer-based World Models Are Happy...
Search
tt1717
January 31, 2024
Research
0
79
[論文紹介] Transformer-based World Models Are Happy With 100k Interactions
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
January 31, 2024
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
24
[論文サーベイ] Survey on Visualization in Deep Reinforcement Learning of Game Tasks 2
tt1717
0
17
[論文サーベイ] Survey on VLM and Reinforcement Learning in Game Tasks (Minecraft)
tt1717
0
24
[論文紹介] RT-1: Robotics Transformer for Real-World Control at Scale
tt1717
0
56
[論文紹介] Chip Placement with Deep Reinforcement Learning
tt1717
0
36
[論文紹介] Human-level control through deep reinforcement learning
tt1717
0
130
[論文紹介] Deep Learning for Video Game Playing
tt1717
0
56
[論文紹介] Playing Atari with Deep Reinforcement Learning
tt1717
0
69
[論文サーベイ] Survey on Adversarial Attack with DRL
tt1717
0
9
Other Decks in Research
See All in Research
12
0325
0
190
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
480
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
260
データサイエンティストをめぐる環境の違い 2024年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
580
第79回 産総研人工知能セミナー 発表資料
agiats
2
160
[CV勉強会@関東 CVPR2024] Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation / kantocv 61th CVPR 2024
shunk031
1
460
最近のVisual Odometryと Depth Estimation
sgk
1
270
SNLP2024:Planning Like Human: A Dual-process Framework for Dialogue Planning
yukizenimoto
1
330
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
230
Matching 2D Images in 3D: Metric Relative Pose from Metric Correspondences
sgk
1
320
ニューラルネットワークの損失地形
joisino
PRO
35
16k
Introducing Research Units of Matsuo-Iwasawa Laboratory
matsuolab
0
920
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
65
4.4k
Rails Girls Zürich Keynote
gr2m
94
13k
Designing for humans not robots
tammielis
250
25k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
We Have a Design System, Now What?
morganepeng
50
7.2k
It's Worth the Effort
3n
183
27k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Transcript
どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・Atari 100kベンチマークを使用して評価し,「中央値,四分位平 均 (IQM),平均スコア」で高い性能を示した ・予測された報酬を世界モデルにフィードバックすることで,現在 どれだけの報酬が出力されているかという情報を提供する
・Dreamerv2の損失関数を修正して,関係するエントロピー項とク ロスエントロピー項の相対的な重みを微調整した ・強化学習におけるサンプル効率の向上を目指し,Transformer-XL アーキテクチャを基にした新しい自己回帰型の世界モデル (TWM)を 提案した ・提案されたTWMは,Atari 100kベンチマークで既存のモデルフ リー or モデルベースの強化学習アルゴリズムを上回る性能を示した Transformer-based World Models Are Happy With 100k Interactions (ICLR 2023) Jan Robine, Marc Höftmann, Tobias Uelwer, Stefan Harmeling https://arxiv.org/abs/2303.07109 2024/01/31 論文を表す画像 被引用数:13 1/9 ・Transformer-XLアーキテクチャを活用することで長期依存関係を 学習し,計算効率を保持している ・TWMは推論時にTransformerを必要としないため,計算コストを 削減している
❖ 観測のエンコード: ➢ 観測otはCNNを使用して潜在状態ztに変換 ❖ 潜在状態,行動,報酬の埋め込み: ➢ 生成された潜在状態zt,行動at,報酬rtはそれぞれ線形埋め込みを通して 処理される ❖
Transformerの活用: ➢ 埋め込まれた潜在状態,行動,報酬はTransformerに入力され,各時間に おいて決定論的な隠れ状態htを計算する モデル 2/9
モデル 3/9 ❖ MLPを使用した予測 ➢ Transformerによって計算された隠れ状態htを元に,MLPを使用して次の 潜在状態zt+1^,報酬rt^,割引率γt^の予測を行う ❖ 時系列データの処理 ➢
Transformerはht-Lからhtまでのシーケンスを処理することで過去のデー タに基づいて現在の隠れ状態htを更新する
損失関数の設計 (観測モデル) 4/9 ❖ decoder:観測デコーダ ➢ モデルがデータをどれだけうまく再構成できているかを測る項 ❖ entropy regularizer:エントロピー正則化項
➢ 潜在状態の分布が一様になりすぎることを防ぐための項 ❖ consistency:一貫性損失 ➢ エンコーダとダイナミクスモデルが生成する潜在状態の分布の一貫性を測 る項 ❖ α1, α2:ハイパラ ➢ エントロピー正則化項と一貫性損失の重みを制御する
❖ latent state predictor:潜在状態予測器 ➢ 次の時間における潜在状態 zt+1 の予測のクロスエントロピー ❖ reward
predictor:報酬予測器 ➢ モデルが予測する報酬 rt の負の対数尤度 ❖ discount predictor:割引予測器 ➢ 割引率 γt の予測の負の対数尤度,エピソード終了時 dt=1 のときγt=0で それ以外のときは,γt=γとなる ❖ β1, β2:ハイパラ ➢ 報酬予測器と割引予測器の重みを制御する 損失関数の設計 (ダイナミクスモデル) 5/9
Atari 100kベンチマーク結果 (定量評価) 6/9 ❖ 100エピソードで訓練したモデ ルで5回評価したスコアから 「中央値と平均値」を算出 ❖ Normalized
Mean ➢ 人間プレイヤーの平均スコア に対する各アルゴリズムのス コアの正規化平均 ❖ Normalized Median ➢ 人間プレイヤーの平均スコア に対する各アルゴリズムのス コアの正規化中央値 ❖ ほとんどのゲームで従来手法を 上回る性能 ❖ Normalized Meanのスコアが 高いことから人間プレイヤーに 匹敵する性能を示している
❖ Boxing ➢ プレイヤー (白) が攻撃 (赤フレーム)を行い,次のフレームで報酬を獲得 している (緑フレーム) ❖
Freeway ➢ プレイヤーは上方向に移動するアクションを継続して選択している (赤い 横枠) ❖ モデルは行動を取り,その結果として期待される報酬を計算し,ゲー ムの進行を「想像」することができている ゲームタスクの観測軌道 (定性評価) 7/9
まとめ 8/9 ❖ World model × Transformerによるモデルを提案した ❖ Dreamerv2の損失関数の設計を修正した ❖
定量評価において,平均スコアは人間とほぼ同等性能 ❖ 定性評価では,提案モデルが観測ot,行動at,報酬rtを予測しゲーム 進行を再現できている
感想 9/9 ❖ 推論時にTransformerを使用しないことで,計算コスト削減しているの がIRISとの違い (だと思う) ❖ このモデルをオフラインデータで実験したらどのようになるのか気に なる ➢
githubを見た限りデータセットはないのでオンライン学習だと思う