Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Bedrock Custom model importを試してみる
Search
ttnyt8701
February 19, 2025
Programming
3
150
Amazon Bedrock Custom model importを試してみる
【AWS活用 徹底Amazon Bedrock #3】カスタムモデル 編
https://blueish.connpass.com/event/345802/
ttnyt8701
February 19, 2025
Tweet
Share
More Decks by ttnyt8701
See All by ttnyt8701
Gemini CLI のはじめ方
ttnyt8701
1
200
ObsidianをMCP連携させてみる
ttnyt8701
3
2.6k
Claude Codeの使い方
ttnyt8701
2
320
FastMCPでMCPサーバー/クライアントを構築してみる
ttnyt8701
3
450
LangChain Open Deep Researchとは?
ttnyt8701
2
290
Vertex AI Agent Builderとは?
ttnyt8701
4
250
A2A(Agent2Agent )とは?
ttnyt8701
2
420
Amazon Bedrock LLM as a Judgeを試す
ttnyt8701
2
78
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
ttnyt8701
3
76
Other Decks in Programming
See All in Programming
お前も Gemini CLI extensions を作らないか?
satohjohn
0
110
マイベストのシンプルなデータ基盤の話 - Googleスイートとのつき合い方 / mybest-simple-data-architecture-google-nized
snhryt
0
130
AI 時代だからこそ抑えたい「価値のある」PHP ユニットテストを書く技術 #phpconfuk / phpcon-fukuoka-2025
shogogg
1
330
Tangible Code
chobishiba
3
490
MCPサーバー「モディフィウス」で変更容易性の向上をスケールする / modifius
minodriven
7
1.2k
CSC509 Lecture 09
javiergs
PRO
0
290
AI POSにおけるLLM Observability基盤の導入 ― サイバーエージェントDXインターン成果報告
hekuchan
0
380
CSC509 Lecture 10
javiergs
PRO
0
170
自動テストのアーキテクチャとその理由ー大規模ゲーム開発の場合ー
segadevtech
2
740
モテるデスク環境
mozumasu
3
1.4k
Eloquentを使ってどこまでコードの治安を保てるのか?を新人が考察してみた
itokoh0405
0
3.1k
Kotlinで実装するCPU/GPU 「協調的」パフォーマンス管理
matuyuhi
0
310
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
4 Signs Your Business is Dying
shpigford
186
22k
Music & Morning Musume
bryan
46
6.9k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Designing for Performance
lara
610
69k
The Cult of Friendly URLs
andyhume
79
6.7k
Writing Fast Ruby
sferik
630
62k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Documentation Writing (for coders)
carmenintech
76
5.1k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Transcript
Amazon Bedrock Custom Model Importを試してみる 立野 祐太 2025.02.19 ©BLUEISH 2024.
All rights reserved.
立野 祐太 Yuta Tateno ・Go、GCPでの開発・運用 バックエンドエンジニア 自己紹介 ©BLUEISH 2024. All
rights reserved.
©BLUEISH 2024. All rights reserved. 最新のオープンソースモデルや独自のカスタムモデルをす ぐに・簡単に・安全に使いたい! 👉Amazon Bedrock Custom
Model Importで実現できます
©BLUEISH 2024. All rights reserved. 独自にトレーニングしたモデルやオープンソースモデルを Bedrock上でAPI として運用できる機能 Amazon Bedrock
Custom Model Import とは
- オープンソースモデル、外部でトレーニングしたモデル、自社 開発モデルをBedrockで使える - APIとしてサーバー管理不要で簡単に利用できる - AWSのナレッジベース、エージェント、ガードレールなどの ツールと統合可能 - AWS
のセキュリティとコンプライアンスの枠組み内で安全に運 用 ©BLUEISH 2024. All rights reserved. 主な利点
©BLUEISH 2024. All rights reserved. 対応アーキテクチャ - Mistral - Mixtral
- Flan - Llama 2、Llama3、Llama3.1、Llama3.2、および Llama 3.3 👉すべてのモデルが利用できるわけではない。アーキテクチャの変換や蒸留などの 工夫が必要 対応リージョン - 米国東部 (バージニア北部) - 米国西部 (オレゴン)
©BLUEISH 2024. All rights reserved. - カスタムモデルユニット:インポートしたモデルのアーキテクチャ、パラメータ数、コン テキスト長などに基づいて消費されるリソース単位。インポートした際に決定される。 - 5
分単位で料金が発生 - リクエストによってインスタンス数が自動でスケール カスタムモデルユニットあたりの推論コスト/分: 0.0785(USD) カスタムモデルユニットあたりのストレージコスト/月: 1.95(USD) 料金体系
©BLUEISH 2024. All rights reserved. Llma 3.1 70Bを7分間利用した例 カスタムモデルユニットあたりの推論コスト/分: $0.0785
カスタムモデルユニットあたりのストレージコスト/月: $1.95 カスタムモデルユニット数: 8 (ドキュメント記載の値を参考) 利用時間: 7分 5 分単位でのウィンドウ数: 2 インスタンス数:1 推論コスト:0.0785 * 8 * 2 * 1 = $1.256 👉軽量なモデルで推論速度が速いほどコストは安くなりそう ストレージコスト:1.95 * 8 = $15.6 / 月
Deep Seekカスタムモデルをインポートしてみる ©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved. 1. モデルの準備 アーキテクチャに対応した任意のモデルを用意 今回はDeepSeek-R1-Distill-Llama-8Bを量子化したカスタムモデルをデ プロイ
©BLUEISH 2024. All rights reserved. 2. S3バケットにモデルをアップロード
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved. 4. Custom Model Importからモデルをインポート
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved. 5. インポートしたモデルを実行してみる
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved.
©BLUEISH 2024. All rights reserved. 最新のオープンソースモデル、外部でカスタムしたモデル、自社開 発モデルなどを速く、簡単、安全、効率的にAWS上で活用できる! まとめ