Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AMA (Ask me anything) 『Kaggleに挑む深層学習プログラミングの極意』...
Search
Shotaro Ishihara
March 22, 2023
Technology
0
430
AMA (Ask me anything) 『Kaggleに挑む深層学習プログラミングの極意』 / Ask me anything
3 月 22 日「W&B 東京ミートアップ #2」での発表資料です
https://wandb.connpass.com/event/275849/
Shotaro Ishihara
March 22, 2023
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
13
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
14
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
210
記者・編集者との協働:情報技術が変えるニュースメディア / Kaishi PU 2024
upura
0
84
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
270
マルチモーダル AI 実装の課題と解決策 / Developer X Summit
upura
0
300
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
890
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
upura
3
1k
Quantifying Memorization and Detecting Training Data of Pre-trained Language Models using Japanese Newspaper
upura
0
75
Other Decks in Technology
See All in Technology
AIエージェント開発における「攻めの品質改善」と「守りの品質保証」 / 2024.04.09 GPU UNITE 新年会 2025
smiyawaki0820
0
450
AWS全冠芸人が見た世界 ~資格取得より大切なこと~
masakiokuda
4
5.2k
Amazon CloudWatch Application Signals ではじめるバーンレートアラーム / Burn rate alarm with Amazon CloudWatch Application Signals
ymotongpoo
5
390
技術者はかっこいいものだ!!~キルラキルから学んだエンジニアの生き方~
masakiokuda
2
250
DETR手法の変遷と最新動向(CVPR2025)
tenten0727
2
1.3k
AIを活用した化学反応的なスピード開発 TDD × ペアプロ × AI / Chemically Reactive Speed Development with AI. TDD-Pair Pro-AI
oomatomo
0
260
PicoRabbit: a Tiny Presentation Device Powered by Ruby
harukasan
PRO
2
150
Lightdashの利活用状況 ー導入から2年経った現在地_20250409
hirokiigeta
2
280
大AI時代で輝くために今こそドメインにディープダイブしよう / Deep Dive into Domain in AI-Agent-Era
yuitosato
1
330
Vision Pro X Text to 3D Model ~How Swift and Generative Al Unlock a New Era of Spatial Computing~
igaryo0506
0
260
システムとの会話から生まれる先手のDevOps
kakehashi
PRO
0
260
DuckDB MCPサーバーを使ってAWSコストを分析させてみた / AWS cost analysis with DuckDB MCP server
masahirokawahara
0
1.2k
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Building an army of robots
kneath
304
45k
Done Done
chrislema
183
16k
KATA
mclloyd
29
14k
The Cult of Friendly URLs
andyhume
78
6.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
Adopting Sorbet at Scale
ufuk
76
9.3k
Faster Mobile Websites
deanohume
306
31k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Designing for humans not robots
tammielis
252
25k
How to Think Like a Performance Engineer
csswizardry
23
1.5k
Transcript
W&B 東京ミートアップ #2 2023 年 3 月 22 日 小嵜
耕平、秋葉 拓哉、林 孝紀、◯石原 祥太郎 AMA (Ask me anything) 『Kaggleに挑む深層学習 プログラミングの極意』
2 • 1 月 31 日に紙版の発売開始 • 現時点で 4 刷が決定
• 電子版も販売予定
3 • 書籍ページ(講談社・Amazon) • 付録コード・正誤表・脚注(GitHub) • 著者の紹介記事(秋葉さん・石原) • 書評(からあげさん・TJO さん・Maxwellさん
・nikkie さん) • Twitter 評判「Kaggle 極意」「Kaggle 本」 リンク集
4 • なぜ Kaggle x 深層学習(極意本)? • 本書の目次と担当 • 本書の特徴と補完資料
本日の目次
5 • Kaggle の入門としてタイタニック号を題材にした コンテストが有名 • 扱うのは、テーブル形式 のデータセット(右図) • サイズは総計で
93.08 kB https://www.kaggle.com/c/titanic Kaggle のイメージ => Titanic ?
6 ※ Amazon で、レビュー数が上位の 2 冊 • 『Kaggle で勝つデータ分析の技術』 (技術評論社、2019
年) • 『Python ではじめる Kaggle スタートブック』 (講談社、2020 年) これまでの「Kaggle 本」はテーブル形式 のデータセットを扱う例が有名
7 データセットの種類別の推移 Kaggle 公開のデータセット 「Meta Kaggle」から作成 したデータセットの種類別 のコンテスト数の推移 (2023 年
1 月時点で終了 したコンテストまでを対象 に集計)
8 • 画像やテキストを題材にしたコンテストが増加 • アルゴリズムも、勾配ブースティング決定木から ニューラルネットワーク(深層学習)に • データセットのサイズも巨大化 ◦ Happywhale
- Whale and Dolphin Identification: 62.06 GB ◦ American Express - Default Prediction: 50.31 GB ◦ H&M Personalized Fashion Recommendations: 34.56 GB 深層学習の利用が一般的に
9 • 画像・自然言語処理の機械学習コンテストを題材 に深層学習ライブラリ「PyTorch」の実装を交え、 著者らの経験に基づく知見をまとめた書籍 • 第 1-2 章で基礎知識を学び、第 3-5
章で具体的な 機械学習コンテストに挑戦していく構成 『Kaggle に挑む深層学習プログラミング の極意』(講談社)
10 目次 https://www.kspub.co.jp/book/detail/5305133.html • 第 1 章: 機械学習コンテストの基礎知識 • 第
2 章: 探索的データ分析とモデルの作成・検証・ 性能向上 • 第 3 章: 画像分類入門 • 第 4 章: 画像検索入門 • 第 5 章: テキスト分類入門
11 • 石原(第 1-2 章): Kaggle Master • 秋葉(第 3
章): Kaggle Grandmaster • 小嵜(第 4 章): Kaggle Grandmaster • 林(第 5 章): Kaggle Master • 書籍は有識者 5 名にレビューしていただいた (まえがき参照) 著者紹介
12 • 主要な対象読者は、画像や自然言語処理を題材と した機械学習コンテストに参加する方 • 著者らの経験を基に、一般的な書籍にはあまり書 かれていない暗黙知や技法も含めてまとめている • より広く「Kaggle でない実世界の課題を深層学習
で解決するといった場面でも役立つ」 https://karaage.hatenadiary.jp/entry/2023/02/06/073000 特徴①予測性能を高める実践的な知見
13 • 第 2 章: 手戻りが少なくなるような実験方法 • 第 3 章:
学習終盤に強いデータ拡張をやめる • 第 4 章: ArcFace のハイパーパラメータの勘所 • 第 5 章: 長さが近いテキストをまとめたミニバッチ 実践的な知見の例(抜粋)
14 • 本体は 224 ページと比較的コンパクト • サンプルコードは必要最低限の関数のみを掲載し て読みやすくし、全体は GitHub へ
• 参考文献(ウェブサイト・論文など)は 287 件 • カラー本で図表も多め 特徴②凝縮した内容 + 付録・参考文献
15 データサイズも大きく、泥臭い処理も含めて掲載 • 第 3 章: 犬猫の画像分類 ◦ 多くの画像認識タスクに拡張可能 •
第 4 章: 著名な Google Landmark Retrieval • 第 5 章: 質問文の類似判定 ◦ 多くの自然言語処理タスクに拡張可能 特徴③実際のコンテストを題材に
16 • 『Python ではじめる Kaggle スタートブック』 (講談社、2020 年) • 『Kaggle
で勝つデータ分析の技術』 (技術評論社、2019 年) • 『統計的学習の基礎』(共立出版) 補完① Kaggle 全般やテーブル形式の データセットを扱う方法
17 • 『Kaggle Grandmasterに学ぶ 機械学習 実践アプローチ』 (マイナビ出版) • 『深層学習 改訂第2版』(講談社)
• 『画像認識』(講談社) • 『Vision Transformer入門』(技術評論社) • 『深層学習による自然言語処理』(講談社) • 『IT Text 自然言語処理の基礎』(オーム社) 補完②深層学習や画像認識・自然言語処理
18 • 開発ツールの説明は必要最小限にとどめている • 公式ドキュメントやチュートリアルなどを必要に 応じて参照 ◦ https://docs.docker.com/ ◦ https://yutaroogawa.github.io/pytorch_tuto
rials_jp/ 補完③ Docker や PyTorch
お気軽にご質問ください AMA (Ask me anything) 『Kaggleに挑む深層学習 プログラミングの極意』