Upgrade to Pro — share decks privately, control downloads, hide ads and more …

AMA (Ask me anything) 『Kaggleに挑む深層学習プログラミングの極意』...

AMA (Ask me anything) 『Kaggleに挑む深層学習プログラミングの極意』 / Ask me anything

3 月 22 日「W&B 東京ミートアップ #2」での発表資料です
https://wandb.connpass.com/event/275849/

Shotaro Ishihara

March 22, 2023
Tweet

More Decks by Shotaro Ishihara

Other Decks in Technology

Transcript

  1. W&B 東京ミートアップ #2 2023 年 3 月 22 日 小嵜

    耕平、秋葉 拓哉、林 孝紀、◯石原 祥太郎 AMA (Ask me anything) 『Kaggleに挑む深層学習 プログラミングの極意』
  2. 6 ※ Amazon で、レビュー数が上位の 2 冊 • 『Kaggle で勝つデータ分析の技術』 (技術評論社、2019

    年) • 『Python ではじめる Kaggle スタートブック』 (講談社、2020 年) これまでの「Kaggle 本」はテーブル形式 のデータセットを扱う例が有名
  3. 8 • 画像やテキストを題材にしたコンテストが増加 • アルゴリズムも、勾配ブースティング決定木から ニューラルネットワーク(深層学習)に • データセットのサイズも巨大化 ◦ Happywhale

    - Whale and Dolphin Identification: 62.06 GB ◦ American Express - Default Prediction: 50.31 GB ◦ H&M Personalized Fashion Recommendations: 34.56 GB 深層学習の利用が一般的に
  4. 10 目次 https://www.kspub.co.jp/book/detail/5305133.html • 第 1 章: 機械学習コンテストの基礎知識 • 第

    2 章: 探索的データ分析とモデルの作成・検証・ 性能向上 • 第 3 章: 画像分類入門 • 第 4 章: 画像検索入門 • 第 5 章: テキスト分類入門
  5. 11 • 石原(第 1-2 章): Kaggle Master • 秋葉(第 3

    章): Kaggle Grandmaster • 小嵜(第 4 章): Kaggle Grandmaster • 林(第 5 章): Kaggle Master • 書籍は有識者 5 名にレビューしていただいた (まえがき参照) 著者紹介
  6. 13 • 第 2 章: 手戻りが少なくなるような実験方法 • 第 3 章:

    学習終盤に強いデータ拡張をやめる • 第 4 章: ArcFace のハイパーパラメータの勘所 • 第 5 章: 長さが近いテキストをまとめたミニバッチ 実践的な知見の例(抜粋)
  7. 14 • 本体は 224 ページと比較的コンパクト • サンプルコードは必要最低限の関数のみを掲載し て読みやすくし、全体は GitHub へ

    • 参考文献(ウェブサイト・論文など)は 287 件 • カラー本で図表も多め 特徴②凝縮した内容 + 付録・参考文献
  8. 15 データサイズも大きく、泥臭い処理も含めて掲載 • 第 3 章: 犬猫の画像分類 ◦ 多くの画像認識タスクに拡張可能 •

    第 4 章: 著名な Google Landmark Retrieval • 第 5 章: 質問文の類似判定 ◦ 多くの自然言語処理タスクに拡張可能 特徴③実際のコンテストを題材に
  9. 16 • 『Python ではじめる Kaggle スタートブック』 (講談社、2020 年) • 『Kaggle

    で勝つデータ分析の技術』 (技術評論社、2019 年) • 『統計的学習の基礎』(共立出版) 補完① Kaggle 全般やテーブル形式の データセットを扱う方法
  10. 17 • 『Kaggle Grandmasterに学ぶ 機械学習 実践アプローチ』 (マイナビ出版) • 『深層学習 改訂第2版』(講談社)

    • 『画像認識』(講談社) • 『Vision Transformer入門』(技術評論社) • 『深層学習による自然言語処理』(講談社) • 『IT Text 自然言語処理の基礎』(オーム社) 補完②深層学習や画像認識・自然言語処理