Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AMA (Ask me anything) 『Kaggleに挑む深層学習プログラミングの極意』...
Search
Shotaro Ishihara
March 22, 2023
Technology
0
360
AMA (Ask me anything) 『Kaggleに挑む深層学習プログラミングの極意』 / Ask me anything
3 月 22 日「W&B 東京ミートアップ #2」での発表資料です
https://wandb.connpass.com/event/275849/
Shotaro Ishihara
March 22, 2023
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
1
4
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
upura
3
470
Quantifying Memorization and Detecting Training Data of Pre-trained Language Models using Japanese Newspaper
upura
0
32
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
270
第19回YANSシンポジウムスポンサー資料 / yans2024-nikkei
upura
0
27
Quantifying Memorization of Domain-Specific Pre-trained Language Models using Japanese Newspaper and Paywalls
upura
0
39
「極意本」サンプルコードをクラウド上で動かそう
upura
1
2.3k
論文紹介: Generating News-Centric Crossword Puzzles As A Constraint Satisfaction and Optimization Problem
upura
0
280
関東 Kaggler 会スポンサー資料
upura
0
1.8k
Other Decks in Technology
See All in Technology
PREEMPT_RT over the years
ennael
PRO
0
350
How CERN serves 1EB of data via FUSE
ennael
PRO
0
16k
15 JSON serializers for Ruby
okuramasafumi
2
100
エムスリーマネジメントチーム紹介資料 / Introduction of M3 Management Team
m3_engineering
0
270
LINEヤフー新卒採用 コーディングテスト解説 アルゴリズム問題編
lycorp_recruit_jp
0
13k
LINEヤフー新卒採用 コーディングテスト解説 実装問題編
lycorp_recruit_jp
1
12k
分析者起点の企画を成功させた連携面の工夫
lycorptech_jp
PRO
1
250
I tried the newly introduced certification "Applied Skills" on Microsoft Learn
mappie_kochi
0
140
業務ヒアリングと知識の呪い
tamai_63
0
280
【shownet.conf_】トポロジ図の歩き方
shownet
PRO
0
490
これはPerl? それともRuby? クイズ〜〜〜〜〜!!!- Perl or Ruby Quiz
moznion
2
1.7k
【インフラエンジニアbooks】30分でわかる「AWS継続的セキュリティ実践ガイド」
hssh2_bin
4
1.6k
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
7.5k
Unsuck your backbone
ammeep
668
57k
Keith and Marios Guide to Fast Websites
keithpitt
408
22k
We Have a Design System, Now What?
morganepeng
49
7.2k
Automating Front-end Workflow
addyosmani
1365
200k
Teambox: Starting and Learning
jrom
131
8.7k
How GitHub Uses GitHub to Build GitHub
holman
473
290k
The Power of CSS Pseudo Elements
geoffreycrofte
71
5.3k
GitHub's CSS Performance
jonrohan
1030
450k
What the flash - Photography Introduction
edds
67
11k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
25
660
Transcript
W&B 東京ミートアップ #2 2023 年 3 月 22 日 小嵜
耕平、秋葉 拓哉、林 孝紀、◯石原 祥太郎 AMA (Ask me anything) 『Kaggleに挑む深層学習 プログラミングの極意』
2 • 1 月 31 日に紙版の発売開始 • 現時点で 4 刷が決定
• 電子版も販売予定
3 • 書籍ページ(講談社・Amazon) • 付録コード・正誤表・脚注(GitHub) • 著者の紹介記事(秋葉さん・石原) • 書評(からあげさん・TJO さん・Maxwellさん
・nikkie さん) • Twitter 評判「Kaggle 極意」「Kaggle 本」 リンク集
4 • なぜ Kaggle x 深層学習(極意本)? • 本書の目次と担当 • 本書の特徴と補完資料
本日の目次
5 • Kaggle の入門としてタイタニック号を題材にした コンテストが有名 • 扱うのは、テーブル形式 のデータセット(右図) • サイズは総計で
93.08 kB https://www.kaggle.com/c/titanic Kaggle のイメージ => Titanic ?
6 ※ Amazon で、レビュー数が上位の 2 冊 • 『Kaggle で勝つデータ分析の技術』 (技術評論社、2019
年) • 『Python ではじめる Kaggle スタートブック』 (講談社、2020 年) これまでの「Kaggle 本」はテーブル形式 のデータセットを扱う例が有名
7 データセットの種類別の推移 Kaggle 公開のデータセット 「Meta Kaggle」から作成 したデータセットの種類別 のコンテスト数の推移 (2023 年
1 月時点で終了 したコンテストまでを対象 に集計)
8 • 画像やテキストを題材にしたコンテストが増加 • アルゴリズムも、勾配ブースティング決定木から ニューラルネットワーク(深層学習)に • データセットのサイズも巨大化 ◦ Happywhale
- Whale and Dolphin Identification: 62.06 GB ◦ American Express - Default Prediction: 50.31 GB ◦ H&M Personalized Fashion Recommendations: 34.56 GB 深層学習の利用が一般的に
9 • 画像・自然言語処理の機械学習コンテストを題材 に深層学習ライブラリ「PyTorch」の実装を交え、 著者らの経験に基づく知見をまとめた書籍 • 第 1-2 章で基礎知識を学び、第 3-5
章で具体的な 機械学習コンテストに挑戦していく構成 『Kaggle に挑む深層学習プログラミング の極意』(講談社)
10 目次 https://www.kspub.co.jp/book/detail/5305133.html • 第 1 章: 機械学習コンテストの基礎知識 • 第
2 章: 探索的データ分析とモデルの作成・検証・ 性能向上 • 第 3 章: 画像分類入門 • 第 4 章: 画像検索入門 • 第 5 章: テキスト分類入門
11 • 石原(第 1-2 章): Kaggle Master • 秋葉(第 3
章): Kaggle Grandmaster • 小嵜(第 4 章): Kaggle Grandmaster • 林(第 5 章): Kaggle Master • 書籍は有識者 5 名にレビューしていただいた (まえがき参照) 著者紹介
12 • 主要な対象読者は、画像や自然言語処理を題材と した機械学習コンテストに参加する方 • 著者らの経験を基に、一般的な書籍にはあまり書 かれていない暗黙知や技法も含めてまとめている • より広く「Kaggle でない実世界の課題を深層学習
で解決するといった場面でも役立つ」 https://karaage.hatenadiary.jp/entry/2023/02/06/073000 特徴①予測性能を高める実践的な知見
13 • 第 2 章: 手戻りが少なくなるような実験方法 • 第 3 章:
学習終盤に強いデータ拡張をやめる • 第 4 章: ArcFace のハイパーパラメータの勘所 • 第 5 章: 長さが近いテキストをまとめたミニバッチ 実践的な知見の例(抜粋)
14 • 本体は 224 ページと比較的コンパクト • サンプルコードは必要最低限の関数のみを掲載し て読みやすくし、全体は GitHub へ
• 参考文献(ウェブサイト・論文など)は 287 件 • カラー本で図表も多め 特徴②凝縮した内容 + 付録・参考文献
15 データサイズも大きく、泥臭い処理も含めて掲載 • 第 3 章: 犬猫の画像分類 ◦ 多くの画像認識タスクに拡張可能 •
第 4 章: 著名な Google Landmark Retrieval • 第 5 章: 質問文の類似判定 ◦ 多くの自然言語処理タスクに拡張可能 特徴③実際のコンテストを題材に
16 • 『Python ではじめる Kaggle スタートブック』 (講談社、2020 年) • 『Kaggle
で勝つデータ分析の技術』 (技術評論社、2019 年) • 『統計的学習の基礎』(共立出版) 補完① Kaggle 全般やテーブル形式の データセットを扱う方法
17 • 『Kaggle Grandmasterに学ぶ 機械学習 実践アプローチ』 (マイナビ出版) • 『深層学習 改訂第2版』(講談社)
• 『画像認識』(講談社) • 『Vision Transformer入門』(技術評論社) • 『深層学習による自然言語処理』(講談社) • 『IT Text 自然言語処理の基礎』(オーム社) 補完②深層学習や画像認識・自然言語処理
18 • 開発ツールの説明は必要最小限にとどめている • 公式ドキュメントやチュートリアルなどを必要に 応じて参照 ◦ https://docs.docker.com/ ◦ https://yutaroogawa.github.io/pytorch_tuto
rials_jp/ 補完③ Docker や PyTorch
お気軽にご質問ください AMA (Ask me anything) 『Kaggleに挑む深層学習 プログラミングの極意』