Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Basketball Behavior Challenge 1st Place Solution
Search
Shotaro Ishihara
November 27, 2020
Technology
0
880
Basketball Behavior Challenge 1st Place Solution
「Sports Analyst Meetup #9」での発表資料
https://spoana.connpass.com/event/190699/
Shotaro Ishihara
November 27, 2020
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
240
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
280
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
54
JOAI2025講評 / joai2025-review
upura
0
470
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
170
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
56
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
290
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
81
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
92
Other Decks in Technology
See All in Technology
webpack依存からの脱却!快適フロントエンド開発をViteで実現する #vuefes
bengo4com
4
3.8k
プロダクト開発と社内データ活用での、BI×AIの現在地 / Data_Findy
sansan_randd
1
660
Amazon Q Developer CLIをClaude Codeから使うためのベストプラクティスを考えてみた
dar_kuma_san
0
170
CLIPでマルチモーダル画像検索 →とても良い
wm3
1
650
20251027_マルチエージェントとは
almondo_event
1
490
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
170
GTC 2025 : 가속되고 있는 미래
inureyes
PRO
0
120
AIの個性を理解し、指揮する
shoota
3
520
Kotlinで型安全にバイテンポラルデータを扱いたい! ReladomoラッパーをAIと実装してみた話
itohiro73
3
110
デザインとエンジニアリングの架け橋を目指す OPTiMのデザインシステム「nucleus」の軌跡と広げ方
optim
0
120
JAWS UG AI/ML #32 Amazon BedrockモデルのライフサイクルとEOL対応/How Amazon Bedrock Model Lifecycle Works
quiver
1
150
[re:Inent2025事前勉強会(有志で開催)] re:Inventで見つけた人生をちょっと変えるコツ
sh_fk2
1
1k
Featured
See All Featured
A Tale of Four Properties
chriscoyier
161
23k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
The World Runs on Bad Software
bkeepers
PRO
72
11k
Typedesign – Prime Four
hannesfritz
42
2.8k
Automating Front-end Workflow
addyosmani
1371
200k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Being A Developer After 40
akosma
91
590k
Documentation Writing (for coders)
carmenintech
75
5.1k
Transcript
Basketball Behavior Challenge 1位解法 Shotaro Ishihara, u++ (@upura0) Sports Analyst
Meetup #9 2020年12⽉13⽇ 1
本発表について 2019年12⽉〜2020年9⽉に開催されていた「Basketball Behavior Challenge: BBC2020」[1]の1位解法の紹介 時系列の座標データから「スクリーンプレイ」があったか否 かを判定するコンペ [1] https://competitions.codalab.org/competitions/23905 2
⾃⼰紹介 Shotaro Ishihara, u++ (@upura0) spoanaの運営メンバー 本業はメディア企業のデータサイエンティスト 本コンペは、spoana #7のLT発表で知った(アーカイブ[2]) 共著に『PythonではじめるKaggleスタートブック』(講談
社)[3] [2] https://www.youtube.com/channel/UCX1kD7i5JvvRIZdo9xjlakw [3] https://www.kspub.co.jp/book/detail/5190067.html 3
データの概要 frame scr_x scr_y usr_x usr_y uDF_x uDF_y bal_x bal_y
0 2.89 4.74 5.49 1.5 2.78 5.22 6.98 12.7 1 2.88 4.7 5.52 1.51 2.8 5.2 7.08 12.52 2 2.87 4.67 5.54 1.53 2.82 5.19 7.13 12.35 3 2.86 4.65 5.56 1.54 2.84 5.17 7.08 12.37 ... 学習⽤データセット(正例400、負例1128) テスト⽤データセット382 フレーム数は⼀定ではない 予測は0か1なので、予測値の閾値決定が必要 4
スコアの推移 5
機械学習の教師あり学習 [4] ⽯原ら, 『PythonではじめるKaggleスタートブック』, 講談社 6
最初のアプローチ 知識に基づき、予測に効きそうな7つの特徴量を抽出 . プレイヤー3⼈とボールの距離の最⼩値 C = 4 2 6 .
フレーム数 機械学習アルゴリズムには、過去実績から期待値が⼤きい 「LightGBM」を利⽤ 7
性能の向上のために 1位[5]と2位[6]の解法を⽐較 . 「tsfresh」による特徴抽出 . ニューラルネットワークの利⽤ . アンサンブル(複数の予測値の混ぜ合わせ) [5] https://github.com/upura/basketball-behavior-challenge
[6] https://github.com/takaiyuk/codalab-bbc2020 8
「tsfresh」による特徴抽出 特徴量の数: 11340 (4 agents * 2 dimensions + 6
distances between agents ) * 810 重要視された特徴量 9
ニューラルネットワーク 時系列の情報の最⼩値だけ使うと、情報を⼤きく失う 畳み込みニューラルネットワークを利⽤して、特徴を抽出 [7] https://www.mdpi.com/1424-8220/20/13/3697/htm 10
アンサンブル 複数の予測値の混ぜ合わせ 11
まとめ スポーツを題材にしたコンペは楽しい 知識を活かしてスコアが伸びていく 今はKaggleで「NFL 1st and Future - Impact Detection」[8]
が開催中 [8] https://www.kaggle.com/c/nfl-impact-detection 12