Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
英語教育研究の始め方・進め方:目的に合致した手法選択の重要性
Search
Ken Urano
December 21, 2019
Education
1
980
英語教育研究の始め方・進め方:目的に合致した手法選択の重要性
名古屋学院大学大学院2019年度英語セミナー
名古屋学院大学丸の内サテライト
2019.12.21.
Ken Urano
December 21, 2019
Tweet
Share
More Decks by Ken Urano
See All by Ken Urano
The Task is not the End: The Role of Task Repetition and Sequencing In Language Teaching
uranoken
0
500
学習者を対象にした英語教育研究における倫理的配慮
uranoken
0
980
学習者データを「見る」:外国語教師のためのデータの入力、分析、解釈方法
uranoken
0
1.1k
英語教育研究でエビデンスを「つくる」:メタ分析、再現性、追試
uranoken
0
1.3k
タスク·ベースの英語授業:基本的な考え方とデザイン方法
uranoken
0
1.2k
英語の授業をタスクで組み立てる
uranoken
0
1.3k
Designing Task-based ESP Syllabi: Two Cases from an English for Business Purposes Program
uranoken
0
1.4k
第二言語習得と外国語教育における 「文法知識」の位置づけ
uranoken
0
1.3k
Japanese learners’ reliance on specificity when using the English articles: A forced-choice gap-filling study
uranoken
0
870
Other Decks in Education
See All in Education
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
140
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
フィードバックの伝え方、受け身のココロ / The Way of Feedback: Words and the Receiving Heart
spring_aki
1
170
バケットポリシーの記述を誤りマネコンからS3バケットを操作できなくなりそうになった話
amarelo_n24
1
120
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
小学校女性教員向け プログラミング教育研修プログラム「SteP」の実践と課題
codeforeveryone
0
140
Online Privacy
takahitosakamoto
1
120
EVOLUCIÓN DE LAS NEUROCIENCIAS EN LOS CONTEXTOS ORGANIZACIONALES
jvpcubias
0
180
[Segah 2025] Gamified Interventions for Composting Behavior in the Workplace
ezefranca
0
160
理想の英語力に一直線!最高効率な英語学習のすゝめ
logica0419
6
430
20250910_エンジニアの成長は自覚するところから_サポーターズ勉強会
ippei0923
0
290
Human Perception and Cognition - Lecture 4 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
620
Automating Front-end Workflow
addyosmani
1371
200k
Optimizing for Happiness
mojombo
379
70k
How GitHub (no longer) Works
holman
315
140k
Visualization
eitanlees
149
16k
Embracing the Ebb and Flow
colly
88
4.8k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
Being A Developer After 40
akosma
91
590k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
4 Signs Your Business is Dying
shpigford
185
22k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Transcript
ӳޠڭҭݚڀͷ࢝ΊํɾਐΊํ తʹ߹கͨ͠ख๏બͷॏཁੑ Ӝ ݚʢେֶӃӳޠֶઐ߈٬һڭतʗւֶԂେֶʣ email:
[email protected]
໊ݹֶӃେֶେֶӃ2019ӳޠηϛφʔ ໊ݹֶӃେֶؙͷαςϥΠτ ɹɹ2019.12.21. https://www.urano-ken.com/research/NGUSeminar
͡Ίʹ • ͡Ίͯͷӳޠڭҭݚڀɿ ԡ͓͖͍͑ͯͨ͞ίπͱ ϙΠϯτʢݚڀࣾʣ • ຊॻͷ༰ʹ৮Εͭͭɺຊॻ ʹؚΊΔ͜ͱͷͰ͖ͳ͔ͬͨ ͜ͱ͓͠͠·͢ ݚڀ
͡Ίʹ ʮݚڀʯͱԿ͔ ݚڀ
ݚڀʢresearchʣͱ Research is a systematic process of inquiry consisting of
three elements or components: a. a question, problem, or hypothesis b. data, and c. analysis and interpretation of data (Nunan, 1992, p. 3) question data interpretation
question data interpretation → → ݚڀʢresearchʣͱ systematic
ݚڀ՝ σʔλ ղऍ → → ݚڀʢresearchʣͱ ϧʔϧʢํ๏ʣ
ݚڀʢresearchʣͱ • ݚڀͱɺݚڀ՝ʢ͍ʣΛઃఆ ͠ɺࠜڌͱͳΔσʔλΛूΊɺͦͷ ͑Λಋ͖ग़͢ӦΈ • ্هͷ̏ཁૉͦΕͧΕʹ͍ͭͯҰఆͷ ଋ͝ͱ͕͋Δ
ݚڀͷతʢgoalʣ • ݚڀՌΛͲ͜ʹؐݩ͢Δ͔ • ڭࢣʢݚڀऀʣݸਓ • ӳޠڭҭʢݚڀʣશମ
ݚڀͷతʢgoalʣ • ڭࢣݸਓͷؐݩΛࢦ͢ • ࣮ફͱͯ͠ͷݚڀ ʢpractitioner researchʣ • શମͷؐݩΛࢦ͢ •
ֶज़తͳݚڀ ʢacademic researchʣ
ݚڀͷతʢgoalʣ • ࣮ફͱͯ͠ͷݚڀͷత • ࣗͷੜెͨͪʹ͍ͭͯͷཧղΛ ਂΊɺ࣮ફ্ͷΛղܾ͢Δ • ڭࢣͱͯ͠ͷ
ݚڀͷతʢgoalʣ • ྫɿ • ࢼߦࡨޡͷ݁Ռɺࣗͷतۀ͕ ͏·͍͘͘Α͏ʹͳͬͨ • ੜె͕ΔؾΛݟͤΔΑ͏ʹͳͬͨ • ࣗͷ୲Ϋϥεͷ্͕͕ͬͨ
ݚڀͷతʢgoalʣ • ֶज़తͳݚڀͷత • ӳޠڭҭʢݚڀʣશମΛҰา લʹਐΊΔͨΊͷߩݙ • ࣗͷΫϥεҎ֎Ͱཱͭݟ • ଞͷจ຺Ͱͯ·Δݟ
ݚڀͷతʢgoalʣ • ࣮ફͱͯ͠ͷݚڀͱֶज़తͳݚڀ • ༏ྼͳ͍ • త͕ҟͳΓɺํ๏͕ҟͳΔ
࣮ફͱͯ͠ͷݚڀ • ϦϑϨΫςΟϒͳӳޠڭҭΛ ࢦͯ͠ɿڭࢣͷޠΓ͕͘ तۀݚڀʢͻͭ͡ॻʣ • ࣮ફͱͯ͠ͷݚڀͷํ๏ ࣄྫΛऩ ݚڀ
࣮ફͱͯ͠ͷݚڀ • ӳޠڭࢣͷͨΊͷ࣮ફݚڀ ΨΠυϒοΫʢେमؗॻళʣ • ڭҭ࣮ફΛݚڀͷܗʹ ·ͱΊΔͨΊͷࢦೆॻ ݚڀ
ֶज़తͳݚڀ ݚڀ • ݚڀՌΛશମʹؐݩ͢ΔͨΊʹ • ࣗͷݚڀͱଞͷݚڀʢઌߦݚڀʣ ͱͷؔΛ໌֬ʹࣔ͢ • ݚڀ݁Ռ͕ଞͷจ຺ʹస༻ʢԠ༻ʣ ՄೳʹͳΔͨΊͷखଓ͖Λ౿Ή
ݚڀͷ̏ཁૉ ݚڀ՝ σʔλ ղऍʢ͑ʣ
ݚڀ՝ͷઃఆํ๏ 1. ͓ΑͦͷݚڀςʔϚΛܾΊΔ 2. ڵຯɾؔ৺ɺݚڀՁɺ࣮ߦՄೳੑΛ ݕ౼͢Δ 3. ؔ࿈͢ΔݚڀʢઌߦݚڀʣΛूΊɺ ಡΈɺ·ͱΊΔ ݚڀ՝
ݚڀ՝ͷઃఆํ๏ 1. ͓ΑͦͷݚڀςʔϚΛܾΊΔ 2. ڵຯɾؔ৺ɺݚڀՁɺ࣮ߦՄೳੑΛ ݕ౼͢Δ 3. ؔ࿈͢ΔݚڀʢઌߦݚڀʣΛूΊɺ ಡΈɺ·ͱΊΔ ݚڀ՝
ݚڀ՝ͷઃఆํ๏ • ڵຯɾؔ৺ • Γ͍ͨ͜ͱ • ݚڀՁ • Δ͖͜ͱɺٻΊΒΕ͍ͯΔ͜ͱ •
࣮ߦՄೳੑ • ΕΔ͜ͱ
ݚڀ՝ͷઃఆํ๏ • ઌߦݚڀͷ·ͱΊ 1. ݚڀςʔϚ͕ͲͷΑ͏ͳΓޱͰ ѻΘΕ͖͔ͯͨ 2. Կ͕ௐࠪ͞ΕɺԿ͕໌͠ɺ Կ͕Θ͔͍ͬͯͳ͍͔ 3.
ཧతܽؕɺํ๏తͳ͍͔
ݚڀ՝ͷઃఆํ๏ • Α͍ݚڀ՝ • ઌߦݚڀͰॏཁͩͱࢦఠ͞Ε͍ͯΔ ͷʹेௐࠪ͞Ε͍ͯͳ͍ͷ • ઌߦݚڀʹ͕͋ΓɺͦΕΛ ղܾ͢Δͷ
ݚڀͷछྨ छྨ Ξϓϩʔν త ୳ࡧʗݕূ จݙݚڀ 1. ઌߦݚڀΛཧ͠༰Λݕ౼͢Δ ࣮ূݚڀ ࣭తݚڀ
1. จ຺Λߟྀͯ͠ࣄΛଊ͑Δ ୳ࡧܕ ݕূܕ 2. จ຺Λߟྀͯ͠ࢀՃऀͷม༰Λଊ͑Δ 3. ࢀՃऀͷܦݧೝࣝΛଊ͑Δ 4. ઌߦݚڀͷର֎ͷࣄΛ໌Β͔ʹ͢Δ 5. ݚڀͷ৴ጪੑΛߴΊΔ ྔతݚڀ 1. ࣄͷಛΛྔతʹهड़͢Δ 2. ࣄͷؔ࿈ੑΛଊ͑Δ 3. ࣄͷࠩҟҼՌؔΛଊ͑Δ Ӝଞʢ2016, p. 8ʣ
ݚڀͷछྨ छྨ Ξϓϩʔν త ୳ࡧʗݕূ จݙݚڀ 1. ઌߦݚڀΛཧ͠༰Λݕ౼͢Δ ࣮ূݚڀ ࣭తݚڀ
1. จ຺Λߟྀͯ͠ࣄΛଊ͑Δ ୳ࡧܕ ݕূܕ 2. จ຺Λߟྀͯ͠ࢀՃऀͷม༰Λଊ͑Δ 3. ࢀՃऀͷܦݧೝࣝΛଊ͑Δ 4. ઌߦݚڀͷର֎ͷࣄΛ໌Β͔ʹ͢Δ 5. ݚڀͷ৴ጪੑΛߴΊΔ ྔతݚڀ 1. ࣄͷಛΛྔతʹهड़͢Δ 2. ࣄͷؔ࿈ੑΛଊ͑Δ 3. ࣄͷࠩҟҼՌؔΛଊ͑Δ Ӝଞʢ2016, p. 8ʣ
୳ࡧͱݕূ • ୳ࡧܕͷݚڀ • ઌߦݚڀ͕ੵ͞Ε͍ͯͳ͍ςʔϚ • ؍ฉ͖औΓͳͲʹΑΓஸೡʹ σʔλΛऩू͠ɺͦͷத͔ΒԿΒ͔ ͷํੑΛݟग़͢͜ͱΛࢦ͢
୳ࡧͱݕূ • ݕূܕͷݚڀ • ઌߦݚڀ͕ੵ͞Εɺ݁Ռʹ͍ͭͯ ͋Δఔ༧ଌͷཱͯΒΕΔςʔϚ • ʮԾઆʯΛઃఆͯͦ͠ΕΛݕূ͢Δ
σʔλͱղऍ • ݚڀ՝ʹ߹ͬͨσʔλΛूΊΔ • σʔλͷछྨʹ߹ͬͨੳɾղऍΛ ߦ͏
σʔλऩू๏ • ࣄྫݚڀʢcase studyʣ • ؍ฉ͖औΓʹΑΓਂ͘ௐࠪ͢Δ • ௐࠪݚڀʢsurvey studyʣ •
հೖΛߦΘͣʹσʔλΛऩू͢Δ • ࣮ݧݚڀʢexperimental studyʣ • հೖΛߦ͍ͳ͕ΒσʔλΛऩू͢Δ
ੳɾղऍ • σʔλੳͱɺूΊͨσʔλΛ ղऍՄೳͳܗʹཁ͢Δ͜ͱ • σʔλͷछྨʹΑͬͯཁํ๏͕ ҟͳΔ
σʔλͷछྨ • ࣭తσʔλ • ϑΟʔϧυɾϊʔπΠϯλϏϡʔͷ จࣈى͜͠ͳͲɺԽΛΘͳ͍ ʢݴޠʣσʔλ • ྔతσʔλ •
ௐࠪରΛʹΑͬͯදͨ͠ σʔλ
σʔλͷཁ • ࣭తΞϓϩʔν • ࣭తσʔλΛҙຯతʹཁ͢Δ • ྔతΞϓϩʔν • ྔతσʔλΛ౷ܭతʹཁ͢Δ
࣭తΞϓϩʔν • σʔλੳͱղऍ • ੳͱղऍΛߦ͖དྷ͢Δ • ίʔσΟϯάͱΧςΰϦʔԽ • จ຺ͷॏࢹͱް͍هड़ ʢthick
descriptionʣ • స༻Մೳੑʢtransferabilityʣ
࣭తΞϓϩʔν • σʔλऩू๏ɺੳ๏ͱʹଟ༷ • ํ๏ͷཧղʹɺ࣮ࡍͷݚڀʹ ଟ͘৮ΕΔ͜ͱ͕ඞཁ • Ӝଞʢ2016ʣͷୈ5ষΛࢀর ʢݚڀࣄྫؚΊͨղઆ͕͋Δʣ
ྔతΞϓϩʔν • σʔλੳ • هड़౷ܭͱਪଌ౷ܭ • ແ࡞ҝநग़ɺແ࡞ҝׂͷॏཁੑ
• ͷલͷσʔλʢඪຊʣ͔ΒΑΓେ͖ͳจ຺ ʢूஂʣΛਪఆ͢Δ • ඪຊͰ؍͞ΕΔࠩɾ͕ؔɺूஂ͔Βͷ ඪຊநग़࣌ͷޡࠩͰੜ͡Δ֬ʢp ʣΛ ܭࢉ͢Δ • p
͕ج४ʢྟքʣҎԼͰ͋Εʮ༗ҙʯ Ͱ͋ΔʢޡࠩͰͳ͍ʣͱஅ͢Δ ਪଌ౷ܭʢ༗ҙੑݕఆʣ
ूஂ ඪɹຊ ਪఆ σʔλղੳ Σ, F, t, p... ूஂͱඪຊ
• ແ࡞ҝநग़ʢrandom samplingʣ • ඪຊ͔ΒूஂΛਪଌ͢Δ͜ͱ͕Մೳͳͷ ɺແ࡞ҝநग़ͷ͓͔͛ • ແ࡞ҝׂʢrandom assignmentʣ •
ෳͷάϧʔϓΛ࡞Δͱ͖ɺແ࡞ҝׂʹ Αͬͯάϧʔϓؒͷ࣭ੑΛ୲อ͢Δ ແ࡞ҝநग़ɾແ࡞ҝׂ
• • ӳޠڭҭʹ͓͚Δྔతݚڀͷେɺ ແ࡞ҝநग़Λߦ͍ͬͯͳ͍ • ࣮ࡍͷΫϥεΛ͏४࣮ݧݚڀͰɺ ແ࡞ҝׂߦΘΕͳ͍ ແ࡞ҝநग़ɾແ࡞ҝׂ
• ݚڀ݁ՌͷҰൠԽՄೳੑʢgeneralizabilityʣ ͕୲อ͞Ε͍ͯͳ͍ • ݚڀ݁ՌΛଞͷจ຺ʹస༻ʢԠ༻ʣՄೳʹ ͢Δͱ͍͏ɺֶज़తͳݚڀͷେલఏ͕ ຬͨ͞Ε͍ͯͳ͍ ແ࡞ҝநग़ɾແ࡞ҝׂ
͜͜·Ͱͷ·ͱΊ
͜͜·Ͱͷ·ͱΊ • ݚڀՌͷݸਓͷؐݩΛతͱͨ͠ ࣮ફͱͯ͠ͷݚڀ • ݚڀՌͷҰൠԽΛతͱͨ͠ ֶज़తͳݚڀ
͜͜·Ͱͷ·ͱΊ • ֶज़తͳݚڀͷ̎ͭͷύϥμΠϜ • ྔతΞϓϩʔνʢ͘ຬวͳ͘୳Δʣ • ౷ܭతཁɿҰൠԽՄೳੑ • ࣭తΞϓϩʔνʢਂ͘ࡉີʹ୳Δʣ •
ҙຯతཁɿస༻Մೳੑ
ຊͷӳޠڭҭݚڀ
ຊͷӳޠڭҭݚڀ ͜Ε·ͰԿΛߦ͖͔ͬͯͨ ຊͷӳޠڭҭݚڀ
શࠃӳޠڭҭֶձʢJASELEʣͷ߹ Mizumoto, Urano, and Maeda (2014) ຊͷӳޠڭҭݚڀ
Mizumoto et al. (2014) • શࠃӳޠڭҭֶձلཁ ARELE ͷୈ1ʙ24߸ʹ ऩ͞Εͨશจ473ຊͷ͏ͪΦϯϥΠϯͰ ެ։͞Ε͍ͯΔ450ຊΛੳ
Mizumoto et al. (2014) • ӳޠλΠτϧͱཁࢫͷΩʔϫʔυੳ • ૯ޠ79,143ɺҟޠ5,152 • ߹ܭස্Ґ300ޠΛରʹΫϥελʔੳ
• લ12߸ͱޙ12߸ʹ͖Ε͍ʹ͔ΕΔ
Mizumoto et al. (2014) • લ12߸ͱޙ12߸Λൺֱ • ςʔϚͱτϐοΫ • ݚڀख๏
• ޮՌྔͱݕఆྗ
Mizumoto et al. (2014) • લ12߸ͱޙ12߸Λൺֱ • ςʔϚͱτϐοΫ • ݚڀख๏
• ޮՌྔͱݕఆྗ
Mizumoto et al. (2014) • ݚڀͷछྨʢ࣮ূɾௐࠪɾ࣮ફɾཧʣ • ݚڀͷతʢ୳ࡧɾݕূʣ • Ξϓϩʔνʢྔɾ࣭ɾࠞ߹ʣ
• հೖʢ༗ɾແʣ
ཧݚڀ ࣮ફใࠂ ௐࠪใࠂ ࣮ূݚڀ ࢉ
߸ ߸
ͦͷଞ ݕূ ୳ࡧ ࢉʢཧݚڀຊҎ֎ܭຊʣ ߸
߸
ͦͷଞ ϛοΫε ࣭ ྔ ࢉʢཧݚڀຊҎ֎ܭຊʣ
߸ ߸
հೖͳ͠ հೖ͋Γ ܝࡌຊ ߸
߸
Mizumoto et al. (2014) • ·ͱΊ • ࣮ફใࠂ͕গͳ͍ • ୳ࡧܕ͕ଟ͍ʢ͔͠૿͍͑ͯΔʣ
• ࣭తΞϓϩʔν͕ͱͯগͳ͍ • հೖݚڀগͳ͍͕૿͍͑ͯΔ
த෦۠ӳޠڭҭֶձʢCELESʣͷ߹ Ӝଞ (2012) Ӝଞ (2012)
Ӝଞ (2012) • த෦۠ӳޠڭҭֶձلཁୈ36ʙ41߸ʹऩ ͞Εͨશจͷ͏࣮ͪূݚڀ151ຊΛੳ
Ӝଞ (2012) • ݚڀͷతʢ୳ࡧɾݕূʣ • σʔλʢྔɾ࣭ʣ • ݚڀͷ݁ʢ୳ࡧɾݕূʣ
" ཧݚڀɺจݙݚڀର͔Β֎ͨ͠ " ʻ࣮ફใࠂʼʹ͍ͭͯผ్ੳͨ͠ ํ๏ ! ҎԼͷྨදʹج͍ͮͯݸʑͷจΛྨͨ͠ ! શମͷΛѲ͢Δ͜ͱ͕తͷͨΊɺΫϩενΣοΫͷ࡞ۀলུͨ͠ λΠϓ
త σʔλ ݁ ಛྫ A ୳ࡧ ྔ ୳ࡧ Ξϯέʔτςετʹجͮ͘ύΠϩοτతݚڀ B ୳ࡧ ྔ ݕূ ֓೦ͷߏతɾૢ࡞తఆ͕ٛෆेʀԾઆ͕ෆ໌ྎͳ ͷʹྔతσʔλͰݕূΛͯ͠͠·͍ͬͯΔ C ୳ࡧ ࣭ ୳ࡧ ΠϯλϏϡʔ؍ʹجͮ͘ɺهड़తݚڀ D ୳ࡧ ࣭ ݕূ ͕݁ඈ༂͠ա͗ͷλΠϓͷݚڀ E ݕূ ྔ ୳ࡧ ݕূͷͨΊͷσʔλ͕ෆे͔ɺ ՝ͷߜΓࠐΈૢ ࡞తఆ͕ٛेͰͳͯ͘ɺ୳ࡧʹऴΘͬͨλΠϓ F ݕূ ྔ ݕূ యܕతͳԾઆݕূܕͷ࣮ূݚڀ G ݕূ ࣭ ୳ࡧ E ͱಉ༷Ͱɺ࣭తσʔλΛओͱ͢Δݚڀ H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚڀ ݁Ռ 64 70
H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚ ɽ݁Ռ (%) 42.4 6.6 11.3
1.3 2.0 27.2 1.3 0.0 7.9 64 10 17 2 3 41 2 0 12 0 10 20 30 40 50 60 70 A B C D E F G H ͦͷଞ
" ཧݚڀɺจݙݚڀର͔Β֎ͨ͠ " ʻ࣮ફใࠂʼʹ͍ͭͯผ్ੳͨ͠ ํ๏ ! ҎԼͷྨදʹج͍ͮͯݸʑͷจΛྨͨ͠ ! શମͷΛѲ͢Δ͜ͱ͕తͷͨΊɺΫϩενΣοΫͷ࡞ۀলུͨ͠ λΠϓ
త σʔλ ݁ ಛྫ A ୳ࡧ ྔ ୳ࡧ Ξϯέʔτςετʹجͮ͘ύΠϩοτతݚڀ B ୳ࡧ ྔ ݕূ ֓೦ͷߏతɾૢ࡞తఆ͕ٛෆेʀԾઆ͕ෆ໌ྎͳ ͷʹྔతσʔλͰݕূΛͯ͠͠·͍ͬͯΔ C ୳ࡧ ࣭ ୳ࡧ ΠϯλϏϡʔ؍ʹجͮ͘ɺهड़తݚڀ D ୳ࡧ ࣭ ݕূ ͕݁ඈ༂͠ա͗ͷλΠϓͷݚڀ E ݕূ ྔ ୳ࡧ ݕূͷͨΊͷσʔλ͕ෆे͔ɺ ՝ͷߜΓࠐΈૢ ࡞తఆ͕ٛेͰͳͯ͘ɺ୳ࡧʹऴΘͬͨλΠϓ F ݕূ ྔ ݕূ యܕతͳԾઆݕূܕͷ࣮ূݚڀ G ݕূ ࣭ ୳ࡧ E ͱಉ༷Ͱɺ࣭తσʔλΛओͱ͢Δݚڀ H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚڀ ݁Ռ 64 70
H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚ ɽ݁Ռ (%) 42.4 6.6 11.3
1.3 2.0 27.2 1.3 0.0 7.9 64 10 17 2 3 41 2 0 12 0 10 20 30 40 50 60 70 A B C D E F G H ͦͷଞ 61.6%
" ཧݚڀɺจݙݚڀର͔Β֎ͨ͠ " ʻ࣮ફใࠂʼʹ͍ͭͯผ్ੳͨ͠ ํ๏ ! ҎԼͷྨදʹج͍ͮͯݸʑͷจΛྨͨ͠ ! શମͷΛѲ͢Δ͜ͱ͕తͷͨΊɺΫϩενΣοΫͷ࡞ۀলུͨ͠ λΠϓ
త σʔλ ݁ ಛྫ A ୳ࡧ ྔ ୳ࡧ Ξϯέʔτςετʹجͮ͘ύΠϩοτతݚڀ B ୳ࡧ ྔ ݕূ ֓೦ͷߏతɾૢ࡞తఆ͕ٛෆेʀԾઆ͕ෆ໌ྎͳ ͷʹྔతσʔλͰݕূΛͯ͠͠·͍ͬͯΔ C ୳ࡧ ࣭ ୳ࡧ ΠϯλϏϡʔ؍ʹجͮ͘ɺهड़తݚڀ D ୳ࡧ ࣭ ݕূ ͕݁ඈ༂͠ա͗ͷλΠϓͷݚڀ E ݕূ ྔ ୳ࡧ ݕূͷͨΊͷσʔλ͕ෆे͔ɺ ՝ͷߜΓࠐΈૢ ࡞తఆ͕ٛेͰͳͯ͘ɺ୳ࡧʹऴΘͬͨλΠϓ F ݕূ ྔ ݕূ యܕతͳԾઆݕূܕͷ࣮ূݚڀ G ݕূ ࣭ ୳ࡧ E ͱಉ༷Ͱɺ࣭తσʔλΛओͱ͢Δݚڀ H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚڀ ݁Ռ 64 70
H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚ ɽ݁Ռ (%) 42.4 6.6 11.3
1.3 2.0 27.2 1.3 0.0 7.9 64 10 17 2 3 41 2 0 12 0 10 20 30 40 50 60 70 A B C D E F G H ͦͷଞ 49.0%
" ཧݚڀɺจݙݚڀର͔Β֎ͨ͠ " ʻ࣮ફใࠂʼʹ͍ͭͯผ్ੳͨ͠ ํ๏ ! ҎԼͷྨදʹج͍ͮͯݸʑͷจΛྨͨ͠ ! શମͷΛѲ͢Δ͜ͱ͕తͷͨΊɺΫϩενΣοΫͷ࡞ۀলུͨ͠ λΠϓ
త σʔλ ݁ ಛྫ A ୳ࡧ ྔ ୳ࡧ Ξϯέʔτςετʹجͮ͘ύΠϩοτతݚڀ B ୳ࡧ ྔ ݕূ ֓೦ͷߏతɾૢ࡞తఆ͕ٛෆेʀԾઆ͕ෆ໌ྎͳ ͷʹྔతσʔλͰݕূΛͯ͠͠·͍ͬͯΔ C ୳ࡧ ࣭ ୳ࡧ ΠϯλϏϡʔ؍ʹجͮ͘ɺهड़తݚڀ D ୳ࡧ ࣭ ݕূ ͕݁ඈ༂͠ա͗ͷλΠϓͷݚڀ E ݕূ ྔ ୳ࡧ ݕূͷͨΊͷσʔλ͕ෆे͔ɺ ՝ͷߜΓࠐΈૢ ࡞తఆ͕ٛेͰͳͯ͘ɺ୳ࡧʹऴΘͬͨλΠϓ F ݕূ ྔ ݕূ యܕతͳԾઆݕূܕͷ࣮ূݚڀ G ݕূ ࣭ ୳ࡧ E ͱಉ༷Ͱɺ࣭తσʔλΛओͱ͢Δݚڀ H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚڀ ݁Ռ 64 70
H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚ ɽ݁Ռ (%) 42.4 6.6 11.3
1.3 2.0 27.2 1.3 0.0 7.9 64 10 17 2 3 41 2 0 12 0 10 20 30 40 50 60 70 A B C D E F G H ͦͷଞ 30.5%
" ཧݚڀɺจݙݚڀର͔Β֎ͨ͠ " ʻ࣮ફใࠂʼʹ͍ͭͯผ్ੳͨ͠ ํ๏ ! ҎԼͷྨදʹج͍ͮͯݸʑͷจΛྨͨ͠ ! શମͷΛѲ͢Δ͜ͱ͕తͷͨΊɺΫϩενΣοΫͷ࡞ۀলུͨ͠ λΠϓ
త σʔλ ݁ ಛྫ A ୳ࡧ ྔ ୳ࡧ Ξϯέʔτςετʹجͮ͘ύΠϩοτతݚڀ B ୳ࡧ ྔ ݕূ ֓೦ͷߏతɾૢ࡞తఆ͕ٛෆेʀԾઆ͕ෆ໌ྎͳ ͷʹྔతσʔλͰݕূΛͯ͠͠·͍ͬͯΔ C ୳ࡧ ࣭ ୳ࡧ ΠϯλϏϡʔ؍ʹجͮ͘ɺهड़తݚڀ D ୳ࡧ ࣭ ݕূ ͕݁ඈ༂͠ա͗ͷλΠϓͷݚڀ E ݕূ ྔ ୳ࡧ ݕূͷͨΊͷσʔλ͕ෆे͔ɺ ՝ͷߜΓࠐΈૢ ࡞తఆ͕ٛेͰͳͯ͘ɺ୳ࡧʹऴΘͬͨλΠϓ F ݕূ ྔ ݕূ యܕతͳԾઆݕূܕͷ࣮ূݚڀ G ݕূ ࣭ ୳ࡧ E ͱಉ༷Ͱɺ࣭తσʔλΛओͱ͢Δݚڀ H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚڀ ݁Ռ 64 70
H ݕূ ࣭ ݕূ ϝλݴޠతهड़ςετߏԽ؍ʹجͮ͘ݚ ɽ݁Ռ (%) 42.4 6.6 11.3
1.3 2.0 27.2 1.3 0.0 7.9 64 10 17 2 3 41 2 0 12 0 10 20 30 40 50 60 70 A B C D E F G H ͦͷଞ 13.9%
Ӝଞ (2012) • ୳ࡧΛతͱ͢Δݚڀ͕ଟ͍ • ಛʹΞϯέʔτௐࠪΛத৺ͱͨ͠ྔతݚڀ ཱ͕ͭ • ٯʹԾઆݕূΛతͱ͢Δݚڀ͕গͳ͍ •
࣭తσʔλΛѻͬͨݚڀ͕গͳ͍
Ӝଞ (2012) • ୳ࡧܕ͕ଟ͘ɺݕূܕ͕গͳ͍ • ݚڀՌͷू͕ਐ·ͳ͍͓ͦΕ • ݕূܕݚڀ͕૿͑Δ͜ͱ͕·͍͠ • ୳ࡧܕͦͷͷʹ͕͋ΔΘ͚Ͱͳ͍
Ӝଞ (2012) • ͳͥ୳ࡧܕݚڀ͕ଟ͍ͷ͔ • ϖʔδͷ੍ݶ • ݕূՄೳͳԾઆܗ·ͰͷྲྀΕΛ࡞Εͳ͍ • ݚڀͷ࣭ͷ
• ઌߦݚڀͷੳ͕ෆे • ʮͱΓ͋͑ͣσʔλΛूΊ·ͨ͠ʯతݚڀ
Ӝଞ (2012) • ࣭తσʔλΛѻͬͨݚڀ͕গͳ͍ • ࣭తݚڀ๏͕ਁಁ͍ͯ͠ͳ͍Մೳੑ • ϖʔδͷ੍ݶ͕͔ͤʹͳ͍ͬͯΔՄೳੑ • ৹ࠪମ੍͕͍ͬͯͳ͍Մೳੑ
Ӝଞ (2012) • ·ͱΊ • దͳݚڀख๏Λબ͢Δॏཁੑ • ݕূܕݚڀΛ૿͢ඞཁੑ • ࣭తݚڀΛ૿͢ඞཁੑ
͜͜·Ͱͷ·ͱΊ
͜͜·Ͱͷ·ͱΊ • దͳݚڀ՝ͷઃఆ • ݚڀతʹ߹ͬͨσʔλऩूͱੳ
ڭҭతࣔࠦ
• ӳޠڭҭݚڀͰɺ࠷ޙʹʮڭҭతࣔࠦʯΛ ड़Δ͜ͱ͕ظ͞ΕΔ͜ͱ͕ଟ͍ • ୯Ұͷݚڀ͔ΒࣔࠦΛड़ͯΑ͍ͷ͔ ڭҭతࣔࠦ
• ྔతݚڀ • ҰൠԽՄೳੑ͕୲อ͞Ε͍ͯͳ͍߹ɺ ຊདྷͳΒݚڀ݁ՌҰൠԽͰ͖ͳ͍ • ಉ͜͡ͱΛผͷจ຺Ͱߦͬͯɺ ಉ݁͡Ռ͕ಘΒΕΔอূͳ͍ • ࠶ݱੑʢreproducibilityʣ
ڭҭతࣔࠦ
• ࠶ݱੑʢreproducibilityʣ·ͨ࠶ݱՄೳੑ ʢreplicabilityʣ • ৺ཧֶͰେنʹߦͬͨࢼݚڀͰɺ ಉ݁͡Ռ͕࠶ݱ͞Εͨͷ4ׂҎԼͩͬͨ ʢຊࣾձ৺ཧֶձใҕһձ, 2016ʣ • ӳޠڭҭͰͲ͏͔ʢߟ͑ͨ͘ͳ͍ʣ
ڭҭతࣔࠦ
• ࣭తݚڀ • ݚڀ݁Ռ͕จ຺ʹґଘ͢ΔͨΊɺ ͦͦҰൠԽߦΘͳ͍ • ް͍هड़Λߦ͏͜ͱͰɺݚڀ݁Ռ͕ผͷ จ຺Ͱͯ·Δ͔Ͳ͏͔ͷஅΛ ಡऀʹҕͶΔ ڭҭతࣔࠦ
• ӳޠڭҭݚڀʹ͓͍ͯɺ୯Ұͷݚڀ͔Β աͳҰൠԽʢڭҭతࣔࠦʣΛߦ͏ͷ ෆద • ͰͲ͏͢Δʁ ڭҭతࣔࠦ
• ݚڀͷݶքΛਅ伨ʹड͚ࢭΊɺڭҭతࣔࠦ Ͱ͖Δ͚ͩ conservative ͳͷʹཹΊΔ • େ͖ͳڭҭతࣔࠦɺݸʑͷݚڀͰͳ͘ɺ ෳͷؔ࿈ݚڀͷ݁ՌΛ·ͱΊͨܗͰߦ͏ • ݚڀͷ౷߹ʢresearch
synthesisʣͱ ϝλੳʢmeta-analysisʣ • ࢼʢreplicationʣͷॏཁੑ ڭҭతࣔࠦ
• ౷߹ɾࢼʹ͑͏ΔݚڀΛߦ͏͜ͱ͕ॏཁ • ݚڀՁͷߴ͍ςʔϚ • ࢼΛߦ͏ͨΊͷใ։ࣔ • هड़౷ܭྔͷ։ࣔ • ʢͰ͖Εʣແ࡞ҝׂͷσβΠϯ
ڭҭతࣔࠦ
͜͜·Ͱͷ·ͱΊ
͜͜·Ͱͷ·ͱΊ • ݚڀՌͷݸਓͷؐݩΛతͱͨ͠ ࣮ફͱͯ͠ͷݚڀ • ݚڀՌͷҰൠԽΛతͱֶͨ͠ज़తͳݚڀ • ͨͩ͠୯Ұͷݚڀ͔ΒͷҰൠԽ͍͠
͜͜·Ͱͷ·ͱΊ • ֶज़తͳݚڀΛߦ͏ͷ͔ͳΓେม • ӳޠڭࢣݚڀΛߦ͏ඞཁ͕͋Δͷ͔
͜͜·Ͱͷ·ͱΊ • ඞཁͳ͍ɺ͚ͩͲ… • ֶज़తͳݚڀΛ͢Δڭࢣ͕૿͑Δ͜ͱ͕ ݚڀͷੵʹͭͳ͕Γ • ͦͷ݁ՌϑΟʔϧυશମͷൃలʹߩݙͰ͖Δ
ݚڀҎ֎ͷબࢶ • ֶज़తݚڀΛߦ͏ͷ͍͠߹ɺ ࣮ફతͳݚڀʹઓͯ͠ΈΔ • ͦΕ͍͠߹ɺʮݚڀʯߦΘͣʹ ࣮ફͷهΛ͚ͭͯΈΔ • ୳ڀత࣮ફʢexploratory practiceʣ
୳ڀత࣮ફ • Allright (2003) ͕ఏএ • ղܾͰͳ͘ݱঢ়ཧղΛతͱͨ͠׆ಈ • ࣋ଓՄೳͳܗͰͷ׆ಈ •
࣮ફͷهड़ʢهʣͱͦΕʹ͍ͭͯͷল ʢϦϑϨΫγϣϯʣͷه
୳ڀత࣮ફ • ʮݚڀʯͰͳ͍ͨΊൃදػձݶΒΕΔ • த෦۠ӳޠڭҭֶձʢCELESʣͰ࣮ફใࠂ ͱͯ͠ͷ୳ڀత࣮ફ͕ใࠂ͞Ε͍ͯΔ • ࠓޙଞֶձͰ૿͑Δ͜ͱΛظ
• ͡Ίͯͷӳޠڭҭݚڀɿ ԡ͓͖͍͑ͯͨ͞ίπͱ ϙΠϯτʢݚڀࣾʣ • ݚڀͷํ๏ʹ͍ͭͯɺଟ͘ ͷ࣮ྫΛհ͠ͳ͕Βղઆ͠ ͍ͯ·͢ ओͳࢀߟจݙ
• ֎ࠃޠڭҭݚڀϋϯυϒοΫ • ࣭తɾྔతݚڀͷ྆ํʹ͍ͭ ͯஸೡʹղઆ͞Ε͍ͯ·͢ ओͳࢀߟจݙ
શମͷ·ͱΊ
શମͷ·ͱΊ • ࣮ફͱͯ͠ͷݚڀͱֶज़తͳݚڀ • ݚڀͷ̏ཁૉʢݚڀ՝ɺσʔλɺղऍʣ • ͜Ε·Ͱͷݚڀͷ֓؍ • ҰൠԽͱڭҭతࣔࠦͷ͠͞ •
ݚڀͷੵͷॏཁੑ • ୳ڀత࣮ફͷՄೳੑ Ken Urano
[email protected]
https://www.urano-ken.com/research/NGUSeminar
• Allright, D. (2003). Exploratory Practice: rethinking practitioner research in
language teaching. Language Teaching Research, 7, 113–141. https://doi.org/10.1191/1362168803lr118oa • Mizumoto, A., Urano, K., & Maeda, H. (2014). A systematic review of published articles in ARELE 1–24 : Focusing on their themes, methods, and outcomes. ARELE, 25, 33–48. https://doi.org/10.20581/arele.25.0_33 • ຊࣾձ৺ཧֶձใҕһձ. (2016). ৺ཧֶݚڀͷ࠶ݱੑʹؔ͢Δ૪. Retrieved from: https://sites.google.com/ site/jssppr/home/reproducibility • Nunan, D. (1992). Research methods in language learning. Cambridge University Press. • ཧɾਫຊಞ (ฤ). (2014). ʰ֎ࠃޠڭҭݚڀϋϯυϒοΫ: ݚڀख๏ͷΑΓྑ͍ཧղͷͨΊʹ (վగ൛)ʱ౦ژ: দദ ࣾ. • ాதɾ∁ѥرࢠɾ౻ాɾୌ༤ҰɾञҪӳथ. (2018). ʰӳޠڭࢣͷͨΊͷ࣮ફݚڀΨΠυϒοΫʱ౦ژ: େमؗॻళ. • ӜݚɾञҪӳथɾ∁ѥرࢠɾాதɾ౻ాɾຊాউٱɾཧཅҰ. (2012). ӳޠڭҭݚڀ๏ͷաڈɾݱࡏɾ ະདྷ. ୈ42ճத෦۠ӳޠڭҭֶձذෞେձɾ՝ผݚڀϓϩδΣΫτ. • ӜݚɾཧཅҰɾాதɾ౻ాɾ∁ѥرࢠɾञҪӳथ. (2016). ʰ͡Ίͯͷӳޠڭҭݚڀ: ԡ͓͖͑ͯ͞ ͍ͨίπͱϙΠϯτʱ౦ژ: ݚڀࣾ. • ٢ాୡ߂ɾۄҪ݈ɾԣߔਈҰɾࠓҪ༟೭ɾ༄ཅհ (ฤ). (2009). ʰϦϑϨΫςΟϒͳӳޠڭҭΛࢦͯ͠: ڭࢣͷ ޠΓ͕͘तۀݚڀʱ౦ژ: ͻͭ͡ॻ. Ҿ༻จݙ