Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
Search
wakama1994
June 21, 2022
Programming
0
220
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
社内のML技術情報共有会
wakama1994
June 21, 2022
Tweet
Share
More Decks by wakama1994
See All by wakama1994
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.8k
Kaggleの歩き方-関西Kaggler会に参加してみて-
wakamatsu_takumu
2
600
BQで天気基盤をつくって、役立つ情報を可視化してみた!
wakamatsu_takumu
4
1.2k
「データモデリング実践入門」は20年経っても色あせない
wakamatsu_takumu
4
1.3k
いろんな可視化ツールあるけどggplotて何がいいの?- 複数ツールで比較してみた!-
wakamatsu_takumu
1
1.6k
文系出身でも「アルゴリズム×数学」はスッキリ理解できた!話
wakamatsu_takumu
0
590
ChatGPTにどんなときRを使えばいいか聞いてみた!
wakamatsu_takumu
0
720
A/Bテスト実践ガイド ~真のデータドリブンへ至る信用できる実験とは~
wakamatsu_takumu
1
1.6k
EBImageを用いたVR画像の変化域抽出と生態系への活用.pdf
wakamatsu_takumu
0
410
Other Decks in Programming
See All in Programming
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
420
Vibe codingでおすすめの言語と開発手法
uyuki234
0
130
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
160
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
130
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
170
AtCoder Conference 2025
shindannin
0
720
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
630
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
120
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
110
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
200
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
6
840
Patterns of Patterns
denyspoltorak
0
370
Featured
See All Featured
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
340
A designer walks into a library…
pauljervisheath
210
24k
Tell your own story through comics
letsgokoyo
0
770
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
130
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
What's in a price? How to price your products and services
michaelherold
246
13k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
59
The Language of Interfaces
destraynor
162
25k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Transcript
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて Machine learning 技術情報共有会 Takumu Wakamatsu Date 2022.06.21
取り組んだ理由 最近仕事でGoogle Data portalを活用した案件を担当 ➢ Data portalとの連携上、Google Big Queryを活用する機会も増えた ➢
pythonに比べ使いやすいケースも結構ある ➢ その一方、複雑な処理になると、コーディングが難しい • SQLの練習ができつつも、その他の言語との比較をして、適切なタイミング でBig Queryを使えるようになりたい!
本書に関して 2020年にデータサイエンティスト協会 が、GitHub上に公開 2022年の1月にソシム社から「データサ イエンス100本ノック構造化データ加工編ガイ ドブックが発売され、こちらを購入し て、実施中 https://digitalpr.jp/r/39499
構成と進捗 https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess/blob/master/docker/doc/100knocks_guide.pdf 6/12(日)から初めて、1〜40まで実施(No7の途中まで、疲れてできない日もあり) →SQLのみで実施(解答見るときに、pythonコードもたまにみてる)
構築したい方は以下で https://github.com/The-Japan-DataScientist-Society/100knocks -preprocess/blob/master/docker/doc/100knocks_guide.pdf
実際やってみて
感想 • 基礎統計量(最大、平均とか)をサクッと出す分には、SQLの方が書きやすい • 一方、複雑な結合とかに当たると、SQLの場合サブクエリが長くなったり、連 携がやりにくかったりするので、記述量が多くなるので、python(で実装され ているpandasの処理)の方が良さげ • 趣味程度にやる分だと、楽しい •
Dockerの環境に触れられるので、知見が広がった
SQLが楽な場合 SQL python S-024: レシート明細データ(receipt)に対し、顧客ID(customer_id)ごとに最も新しい売上年月日(sales_ymd)を求め、10件表示せよ。
SQLが面倒な場合 SQL python P-038: 顧客データ(df_customer)とレシート明細データ(df_receipt)から、顧客ごとの売上金額合計を求め、10件表示せよ。ただし、売上実績がない 顧客については売上金額を0として表示させること。また、顧客は性別コード(gender_cd)が女性(1)であるものを対象とし、非会員(顧客IDが"Z"から 始まるもの)は除外すること。
今後に関して 本書に関して • 6月末を目処に、SQLに関して、100問全てやり切るのを目標 • 実務で使える場面も多いので、サンプルコードで蓄積しておきたい(特に基 礎統計量のあたりとかは) • 暇なので、オラクルのSQLがらみの検定とかは受けてみたい(ただし、お金が高 い)
実務で使いたい方(参考) データベースの構築は厳しいと思うので、 Google Big Queryが個人的にはオススメ • csvがローカルからのアップロードが可能 な他、S3やドライブからもアップロード 可能 •
社内だと、csvデータの処理が現状多いで すが、サクッとデータ切り出したい時は pythonよりは楽(と思う) ◦ ただしカラム表記が日本語対応していないの が、欠点 uery-create-table-by-local-file-upload/