Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
Search
wakama1994
June 21, 2022
Programming
0
220
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
ウェザーニューズ社内のML技術情報共有会
wakama1994
June 21, 2022
Tweet
Share
More Decks by wakama1994
See All by wakama1994
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.9k
「実践DataOps」書籍紹介
wakamatsu_takumu
0
41
Kaggleの歩き方-関西Kaggler会に参加してみて-
wakamatsu_takumu
2
620
BQで天気基盤をつくって、役立つ情報を可視化してみた!
wakamatsu_takumu
4
1.2k
「データモデリング実践入門」は20年経っても色あせない
wakamatsu_takumu
4
1.3k
いろんな可視化ツールあるけどggplotて何がいいの?- 複数ツールで比較してみた!-
wakamatsu_takumu
1
1.6k
文系出身でも「アルゴリズム×数学」はスッキリ理解できた!話
wakamatsu_takumu
0
610
ChatGPTにどんなときRを使えばいいか聞いてみた!
wakamatsu_takumu
0
720
A/Bテスト実践ガイド ~真のデータドリブンへ至る信用できる実験とは~
wakamatsu_takumu
1
1.7k
Other Decks in Programming
See All in Programming
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
310
Raku Raku Notion 20260128
hareyakayuruyaka
0
370
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.4k
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
620
24時間止められないシステムを守る-医療ITにおけるランサムウェア対策の実際
koukimiura
1
130
「ブロックテーマでは再現できない」は本当か?
inc2734
0
1k
組織で育むオブザーバビリティ
ryota_hnk
0
180
CSC307 Lecture 06
javiergs
PRO
0
690
CSC307 Lecture 10
javiergs
PRO
1
660
SourceGeneratorのススメ
htkym
0
200
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
390
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
141
7.3k
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
57
Visualization
eitanlees
150
17k
Typedesign – Prime Four
hannesfritz
42
3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
780
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
A designer walks into a library…
pauljervisheath
210
24k
Transcript
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて Machine learning 技術情報共有会 Takumu Wakamatsu Date 2022.06.21
取り組んだ理由 最近仕事でGoogle Data portalを活用した案件を担当 ➢ Data portalとの連携上、Google Big Queryを活用する機会も増えた ➢
pythonに比べ使いやすいケースも結構ある ➢ その一方、複雑な処理になると、コーディングが難しい • SQLの練習ができつつも、その他の言語との比較をして、適切なタイミング でBig Queryを使えるようになりたい!
本書に関して 2020年にデータサイエンティスト協会 が、GitHub上に公開 2022年の1月にソシム社から「データサ イエンス100本ノック構造化データ加工編ガイ ドブックが発売され、こちらを購入し て、実施中 https://digitalpr.jp/r/39499
構成と進捗 https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess/blob/master/docker/doc/100knocks_guide.pdf 6/12(日)から初めて、1〜40まで実施(No7の途中まで、疲れてできない日もあり) →SQLのみで実施(解答見るときに、pythonコードもたまにみてる)
構築したい方は以下で https://github.com/The-Japan-DataScientist-Society/100knocks -preprocess/blob/master/docker/doc/100knocks_guide.pdf
実際やってみて
感想 • 基礎統計量(最大、平均とか)をサクッと出す分には、SQLの方が書きやすい • 一方、複雑な結合とかに当たると、SQLの場合サブクエリが長くなったり、連 携がやりにくかったりするので、記述量が多くなるので、python(で実装され ているpandasの処理)の方が良さげ • 趣味程度にやる分だと、楽しい •
Dockerの環境に触れられるので、知見が広がった
SQLが楽な場合 SQL python S-024: レシート明細データ(receipt)に対し、顧客ID(customer_id)ごとに最も新しい売上年月日(sales_ymd)を求め、10件表示せよ。
SQLが面倒な場合 SQL python P-038: 顧客データ(df_customer)とレシート明細データ(df_receipt)から、顧客ごとの売上金額合計を求め、10件表示せよ。ただし、売上実績がない 顧客については売上金額を0として表示させること。また、顧客は性別コード(gender_cd)が女性(1)であるものを対象とし、非会員(顧客IDが"Z"から 始まるもの)は除外すること。
今後に関して 本書に関して • 6月末を目処に、SQLに関して、100問全てやり切るのを目標 • 実務で使える場面も多いので、サンプルコードで蓄積しておきたい(特に基 礎統計量のあたりとかは) • 暇なので、オラクルのSQLがらみの検定とかは受けてみたい(ただし、お金が高 い)
実務で使いたい方(参考) データベースの構築は厳しいと思うので、 Google Big Queryが個人的にはオススメ • csvがローカルからのアップロードが可能 な他、S3やドライブからもアップロード 可能 •
社内だと、csvデータの処理が現状多いで すが、サクッとデータ切り出したい時は pythonよりは楽(と思う) ◦ ただしカラム表記が日本語対応していないの が、欠点 uery-create-table-by-local-file-upload/