Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Open Source Data Tooling Landscape
Search
Carol Willing
PRO
August 24, 2021
Technology
1
95
The Open Source Data Tooling Landscape
Given for Coiled webinar on August 24, 2021.
Carol Willing
PRO
August 24, 2021
Tweet
Share
More Decks by Carol Willing
See All by Carol Willing
Be a SLQAR. Micromentoring for all.
willingc
PRO
0
25
Lessons in Leadership: Python, AI, and Heuristics
willingc
PRO
0
110
Embracing Python, AI, and Heuristics: Optimal Paths for Impactful Software
willingc
PRO
0
890
Thriving with Python: Navigate the pitfalls in a polyglot world
willingc
PRO
1
170
Pragmatic Python: Python 3.12 and beyond
willingc
PRO
0
190
The Future is Notebooks
willingc
PRO
0
110
PyCon 2023 Keynote
willingc
PRO
0
200
Python: The People's Programming Language
willingc
PRO
0
100
A Random Walk with Snakes and Friends
willingc
PRO
0
60
Other Decks in Technology
See All in Technology
MySQL5.6から8.4へ 戦いの記録
kyoshidaxx
1
290
WordPressから ヘッドレスCMSへ! Storyblokへの移行プロセス
nyata
0
300
製造業からパッケージ製品まで、あらゆる領域をカバー!生成AIを利用したテストシナリオ生成 / 20250627 Suguru Ishii
shift_evolve
PRO
1
160
高速なプロダクト開発を実現、創業期から掲げるエンタープライズアーキテクチャ
kawauso
1
110
整頓のジレンマとの戦い〜Tidy First?で振り返る事業とキャリアの歩み〜/Fighting the tidiness dilemma〜Business and Career Milestones Reflected on in Tidy First?〜
bitkey
0
150
米国国防総省のDevSecOpsライフサイクルをAWSのセキュリティサービスとOSSで実現
syoshie
2
1.2k
なぜ私はいま、ここにいるのか? #もがく中堅デザイナー #プロダクトデザイナー
bengo4com
0
1.2k
GitHub Copilot の概要
tomokusaba
1
140
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
210
Node-RED × MCP 勉強会 vol.1
1ftseabass
PRO
0
170
AWS Summit Japan 2025 Community Stage - App workflow automation by AWS Step Functions
matsuihidetoshi
1
300
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ #1 量子機械学習の入門
tkhresk
0
140
Featured
See All Featured
For a Future-Friendly Web
brad_frost
179
9.8k
Being A Developer After 40
akosma
90
590k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
680
Building Applications with DynamoDB
mza
95
6.5k
Why Our Code Smells
bkeepers
PRO
337
57k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
The Cult of Friendly URLs
andyhume
79
6.5k
How to train your dragon (web standard)
notwaldorf
94
6.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
How STYLIGHT went responsive
nonsquared
100
5.6k
Raft: Consensus for Rubyists
vanstee
140
7k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Transcript
The Open Source Data Tooling Landscape Carol Willing VP of
Learning Noteable web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Headline Slide Sub-headline The 10 Best Practices for Remote Software
Engineering Focusing on the human element of remote software engineer productivity Vanessa Sochat DOI:10.1145/3459613 Attribution: xkcd 1 Today
Common Data Challenges Exploring Solutions with Open Source Data Tools
2 Data
SCALE
SPEED
CONNECTIONS
CHOICES
The Data Pipeline Perspectives Attribution: Red Bull 3 People
The Data Pipeline Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Executives Opportunity and
Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear Users Productivity and Needs
Attribution: Red Bull Start small...
@WillingCarol 14 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l ...and scale.
Open Source Data Tooling Landscape 4 Ecosystem
Python R Julia Fortran SQL C++ Go Rust Java Scala
4 Ecosystem Programming Languages JavaScript TypeScript Data Analysis Workflows Interactivity
4 Ecosystem Data Work fl ow Project Definition Data Collection
Computation and Modeling Evaluation Deploy at Scale Monitoring Data Preparation Exploratory Analysis Share Results Revisit Goals
Challenges ‣ Foundation (existing infrastructure to cloud) ‣ Variability (DIY
to Hosted/Managed Service) ‣ Complexity ‣ Language ecosystems ‣ Growth
Challenges (cont.) ‣ Best practices / de facto standards ‣
Jargon ‣ Abstractions ‣ Hype CRISP-DM Attribution: IBM Cross-industry standard process for data mining 1996
4 Ecosystem Taxonomy Business Goals People Ethics Model creation Training
Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical
4 Ecosystem Julia Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical DrWatson.jl ParameterSchedulers.jl Pluto.jl IJulia JupyterLab nteract VSCode Plots.jl (Viz) Gadfly.jl (Viz) Makie.jl (Viz - GPU) Flux.jl (ML) Knet.jl (ML/BL) MLJ.jl (ML) Mocha.jl (ML/DL) Tensorflow.jl (ML/DL wrapper) JuMP (optimization) Dataframes.jl ProgressMeters.jl
4 Ecosystem Python Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical Dask JupyterHub Binder Kubernetes papermill Dagster Airflow prefect scipy statsmodel JupyterLab nteract VSCode matplotlib seaborn altair plotly numpy scikit-learn pytorch tensorflow pandas PyJanitor dask datasette evidently bokeh panel voila dash python scripts napari geopandas feast keras fastai fairlearn
4 Ecosystem R Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical RStudio JupyterLab IRkernel ggplot tidyverse dplyr tidyr lubridate readr readxl googlesheets4 ggplot2 rmarkdown Shiny plumber purrr reticulate Keras Tensorflow sparklyr ropensci.org knitr forcats mlr3 CNTK theanos
Algorithmic Business Thinking (ABT) 5 Management Paul McDonagh-Smith MIT Sloan
School of Management https://mitsloan.mit.edu/faculty/directory/paul-mcdonagh-smith https://www.youtube.com/watch?v=bqtn2tYg-kw
@WillingCarol 25 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l Got data at scale? Use open source tools.
web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Thank you The Open Source Data Tooling Landscape Carol Willing VP of Learning Noteable
6 Additional Resources https://krzjoa.github.io/awesome-python-data-science/#/ https://github.com/FavioVazquez/ds-cheatsheets https://www.the-modeling-agency.com/crisp-dm.pdf https://github.com/academic/awesome-datascience