Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Open Source Data Tooling Landscape
Search
Carol Willing
PRO
August 24, 2021
Technology
1
89
The Open Source Data Tooling Landscape
Given for Coiled webinar on August 24, 2021.
Carol Willing
PRO
August 24, 2021
Tweet
Share
More Decks by Carol Willing
See All by Carol Willing
Be a SLQAR. Micromentoring for all.
willingc
PRO
0
15
Lessons in Leadership: Python, AI, and Heuristics
willingc
PRO
0
100
Embracing Python, AI, and Heuristics: Optimal Paths for Impactful Software
willingc
PRO
0
860
Thriving with Python: Navigate the pitfalls in a polyglot world
willingc
PRO
1
160
Pragmatic Python: Python 3.12 and beyond
willingc
PRO
0
180
The Future is Notebooks
willingc
PRO
0
100
PyCon 2023 Keynote
willingc
PRO
0
190
Python: The People's Programming Language
willingc
PRO
0
100
A Random Walk with Snakes and Friends
willingc
PRO
0
56
Other Decks in Technology
See All in Technology
Mastraに入門してみた ~AWS CDKを添えて~
tsukuboshi
0
290
クラウド開発環境Cloud Workstationsの紹介
yunosukey
0
190
AWSの新機能検証をやる時こそ、Amazon Qでプロンプトエンジニアリングを駆使しよう
duelist2020jp
1
270
Running JavaScript within Ruby
hmsk
3
350
AWSのマルチアカウント管理 ベストプラクティス最新版 2025 / Multi-Account management on AWS best practice 2025
ohmura
4
320
Amazon CloudWatch Application Signals ではじめるバーンレートアラーム / Burn rate alarm with Amazon CloudWatch Application Signals
ymotongpoo
5
540
日経電子版 for Android の技術的課題と取り組み(令和最新版)/android-20250423
nikkei_engineer_recruiting
1
430
地味にいろいろあった! 2025春のAmazon Bedrockアップデートおさらい
minorun365
PRO
1
300
Porting PicoRuby to Another Microcontroller: ESP32
yuuu
4
450
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
0
230
白金鉱業Meetup_Vol.18_AIエージェント時代のUI/UX設計
brainpadpr
1
180
Automatically generating types by running tests
sinsoku
2
3.5k
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
183
22k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
670
Docker and Python
trallard
44
3.3k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
119
51k
Writing Fast Ruby
sferik
628
61k
A better future with KSS
kneath
239
17k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.4k
Bash Introduction
62gerente
611
210k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
104
19k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Transcript
The Open Source Data Tooling Landscape Carol Willing VP of
Learning Noteable web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Headline Slide Sub-headline The 10 Best Practices for Remote Software
Engineering Focusing on the human element of remote software engineer productivity Vanessa Sochat DOI:10.1145/3459613 Attribution: xkcd 1 Today
Common Data Challenges Exploring Solutions with Open Source Data Tools
2 Data
SCALE
SPEED
CONNECTIONS
CHOICES
The Data Pipeline Perspectives Attribution: Red Bull 3 People
The Data Pipeline Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Executives Opportunity and
Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear Users Productivity and Needs
Attribution: Red Bull Start small...
@WillingCarol 14 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l ...and scale.
Open Source Data Tooling Landscape 4 Ecosystem
Python R Julia Fortran SQL C++ Go Rust Java Scala
4 Ecosystem Programming Languages JavaScript TypeScript Data Analysis Workflows Interactivity
4 Ecosystem Data Work fl ow Project Definition Data Collection
Computation and Modeling Evaluation Deploy at Scale Monitoring Data Preparation Exploratory Analysis Share Results Revisit Goals
Challenges ‣ Foundation (existing infrastructure to cloud) ‣ Variability (DIY
to Hosted/Managed Service) ‣ Complexity ‣ Language ecosystems ‣ Growth
Challenges (cont.) ‣ Best practices / de facto standards ‣
Jargon ‣ Abstractions ‣ Hype CRISP-DM Attribution: IBM Cross-industry standard process for data mining 1996
4 Ecosystem Taxonomy Business Goals People Ethics Model creation Training
Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical
4 Ecosystem Julia Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical DrWatson.jl ParameterSchedulers.jl Pluto.jl IJulia JupyterLab nteract VSCode Plots.jl (Viz) Gadfly.jl (Viz) Makie.jl (Viz - GPU) Flux.jl (ML) Knet.jl (ML/BL) MLJ.jl (ML) Mocha.jl (ML/DL) Tensorflow.jl (ML/DL wrapper) JuMP (optimization) Dataframes.jl ProgressMeters.jl
4 Ecosystem Python Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical Dask JupyterHub Binder Kubernetes papermill Dagster Airflow prefect scipy statsmodel JupyterLab nteract VSCode matplotlib seaborn altair plotly numpy scikit-learn pytorch tensorflow pandas PyJanitor dask datasette evidently bokeh panel voila dash python scripts napari geopandas feast keras fastai fairlearn
4 Ecosystem R Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical RStudio JupyterLab IRkernel ggplot tidyverse dplyr tidyr lubridate readr readxl googlesheets4 ggplot2 rmarkdown Shiny plumber purrr reticulate Keras Tensorflow sparklyr ropensci.org knitr forcats mlr3 CNTK theanos
Algorithmic Business Thinking (ABT) 5 Management Paul McDonagh-Smith MIT Sloan
School of Management https://mitsloan.mit.edu/faculty/directory/paul-mcdonagh-smith https://www.youtube.com/watch?v=bqtn2tYg-kw
@WillingCarol 25 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l Got data at scale? Use open source tools.
web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Thank you The Open Source Data Tooling Landscape Carol Willing VP of Learning Noteable
6 Additional Resources https://krzjoa.github.io/awesome-python-data-science/#/ https://github.com/FavioVazquez/ds-cheatsheets https://www.the-modeling-agency.com/crisp-dm.pdf https://github.com/academic/awesome-datascience