Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Open Source Data Tooling Landscape
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Carol Willing
PRO
August 24, 2021
Technology
1
98
The Open Source Data Tooling Landscape
Given for Coiled webinar on August 24, 2021.
Carol Willing
PRO
August 24, 2021
Tweet
Share
More Decks by Carol Willing
See All by Carol Willing
Question Driven Development using Python
willingc
PRO
1
87
CPython: Foundation for Scientific Python
willingc
PRO
1
45
Be a SLQAR. Micromentoring for all.
willingc
PRO
0
60
Lessons in Leadership: Python, AI, and Heuristics
willingc
PRO
1
150
Embracing Python, AI, and Heuristics: Optimal Paths for Impactful Software
willingc
PRO
1
970
Thriving with Python: Navigate the pitfalls in a polyglot world
willingc
PRO
1
230
Pragmatic Python: Python 3.12 and beyond
willingc
PRO
0
230
The Future is Notebooks
willingc
PRO
0
130
PyCon 2023 Keynote
willingc
PRO
0
250
Other Decks in Technology
See All in Technology
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
390
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
140
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
640
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
180
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
データ民主化のための LLM 活用状況と課題紹介(IVRy の場合)
wxyzzz
2
700
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
140
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.7k
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.1k
Featured
See All Featured
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
310
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.9k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
140
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Transcript
The Open Source Data Tooling Landscape Carol Willing VP of
Learning Noteable web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Headline Slide Sub-headline The 10 Best Practices for Remote Software
Engineering Focusing on the human element of remote software engineer productivity Vanessa Sochat DOI:10.1145/3459613 Attribution: xkcd 1 Today
Common Data Challenges Exploring Solutions with Open Source Data Tools
2 Data
SCALE
SPEED
CONNECTIONS
CHOICES
The Data Pipeline Perspectives Attribution: Red Bull 3 People
The Data Pipeline Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Executives Opportunity and
Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear Users Productivity and Needs
Attribution: Red Bull Start small...
@WillingCarol 14 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l ...and scale.
Open Source Data Tooling Landscape 4 Ecosystem
Python R Julia Fortran SQL C++ Go Rust Java Scala
4 Ecosystem Programming Languages JavaScript TypeScript Data Analysis Workflows Interactivity
4 Ecosystem Data Work fl ow Project Definition Data Collection
Computation and Modeling Evaluation Deploy at Scale Monitoring Data Preparation Exploratory Analysis Share Results Revisit Goals
Challenges ‣ Foundation (existing infrastructure to cloud) ‣ Variability (DIY
to Hosted/Managed Service) ‣ Complexity ‣ Language ecosystems ‣ Growth
Challenges (cont.) ‣ Best practices / de facto standards ‣
Jargon ‣ Abstractions ‣ Hype CRISP-DM Attribution: IBM Cross-industry standard process for data mining 1996
4 Ecosystem Taxonomy Business Goals People Ethics Model creation Training
Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical
4 Ecosystem Julia Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical DrWatson.jl ParameterSchedulers.jl Pluto.jl IJulia JupyterLab nteract VSCode Plots.jl (Viz) Gadfly.jl (Viz) Makie.jl (Viz - GPU) Flux.jl (ML) Knet.jl (ML/BL) MLJ.jl (ML) Mocha.jl (ML/DL) Tensorflow.jl (ML/DL wrapper) JuMP (optimization) Dataframes.jl ProgressMeters.jl
4 Ecosystem Python Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical Dask JupyterHub Binder Kubernetes papermill Dagster Airflow prefect scipy statsmodel JupyterLab nteract VSCode matplotlib seaborn altair plotly numpy scikit-learn pytorch tensorflow pandas PyJanitor dask datasette evidently bokeh panel voila dash python scripts napari geopandas feast keras fastai fairlearn
4 Ecosystem R Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical RStudio JupyterLab IRkernel ggplot tidyverse dplyr tidyr lubridate readr readxl googlesheets4 ggplot2 rmarkdown Shiny plumber purrr reticulate Keras Tensorflow sparklyr ropensci.org knitr forcats mlr3 CNTK theanos
Algorithmic Business Thinking (ABT) 5 Management Paul McDonagh-Smith MIT Sloan
School of Management https://mitsloan.mit.edu/faculty/directory/paul-mcdonagh-smith https://www.youtube.com/watch?v=bqtn2tYg-kw
@WillingCarol 25 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l Got data at scale? Use open source tools.
web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Thank you The Open Source Data Tooling Landscape Carol Willing VP of Learning Noteable
6 Additional Resources https://krzjoa.github.io/awesome-python-data-science/#/ https://github.com/FavioVazquez/ds-cheatsheets https://www.the-modeling-agency.com/crisp-dm.pdf https://github.com/academic/awesome-datascience