Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Open Source Data Tooling Landscape
Search
Carol Willing
PRO
August 24, 2021
Technology
1
95
The Open Source Data Tooling Landscape
Given for Coiled webinar on August 24, 2021.
Carol Willing
PRO
August 24, 2021
Tweet
Share
More Decks by Carol Willing
See All by Carol Willing
CPython: Foundation for Scientific Python
willingc
PRO
0
25
Be a SLQAR. Micromentoring for all.
willingc
PRO
0
32
Lessons in Leadership: Python, AI, and Heuristics
willingc
PRO
0
120
Embracing Python, AI, and Heuristics: Optimal Paths for Impactful Software
willingc
PRO
0
910
Thriving with Python: Navigate the pitfalls in a polyglot world
willingc
PRO
1
180
Pragmatic Python: Python 3.12 and beyond
willingc
PRO
0
200
The Future is Notebooks
willingc
PRO
0
120
PyCon 2023 Keynote
willingc
PRO
0
210
Python: The People's Programming Language
willingc
PRO
0
100
Other Decks in Technology
See All in Technology
テストを実行してSorbetのsigを書こう!
sansantech
PRO
1
100
20250807_Kiroと私の反省会
riz3f7
0
210
相互運用可能な学修歴クレデンシャルに向けた標準技術と国際動向
fujie
0
240
人に寄り添うAIエージェントとアーキテクチャ #BetAIDay
layerx
PRO
9
2.2k
Kiroでインフラ要件定義~テスト を実施してみた
nagisa53
3
350
「AIと一緒にやる」が当たり前になるまでの奮闘記
kakehashi
PRO
3
140
LLMでAI-OCR、実際どうなの? / llm_ai_ocr_layerx_bet_ai_day_lt
sbrf248
0
460
Segment Anything Modelの最新動向:SAM2とその発展系
tenten0727
0
740
AI関数が早くなったので試してみよう
kumakura
0
280
Strands Agents & Bedrock AgentCoreを1分でおさらい
minorun365
PRO
7
320
Oracle Exadata Database Service on Cloud@Customer X11M (ExaDB-C@C) サービス概要
oracle4engineer
PRO
2
6.3k
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
27
13k
Featured
See All Featured
Faster Mobile Websites
deanohume
308
31k
Done Done
chrislema
185
16k
GitHub's CSS Performance
jonrohan
1031
460k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Designing Experiences People Love
moore
142
24k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Transcript
The Open Source Data Tooling Landscape Carol Willing VP of
Learning Noteable web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Headline Slide Sub-headline The 10 Best Practices for Remote Software
Engineering Focusing on the human element of remote software engineer productivity Vanessa Sochat DOI:10.1145/3459613 Attribution: xkcd 1 Today
Common Data Challenges Exploring Solutions with Open Source Data Tools
2 Data
SCALE
SPEED
CONNECTIONS
CHOICES
The Data Pipeline Perspectives Attribution: Red Bull 3 People
The Data Pipeline Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Executives Opportunity and
Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear
The Data Pipeline Engineers Infrastructure and Process Data Scientists Algorithms
and Models Executives Opportunity and Fear Users Productivity and Needs
Attribution: Red Bull Start small...
@WillingCarol 14 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l ...and scale.
Open Source Data Tooling Landscape 4 Ecosystem
Python R Julia Fortran SQL C++ Go Rust Java Scala
4 Ecosystem Programming Languages JavaScript TypeScript Data Analysis Workflows Interactivity
4 Ecosystem Data Work fl ow Project Definition Data Collection
Computation and Modeling Evaluation Deploy at Scale Monitoring Data Preparation Exploratory Analysis Share Results Revisit Goals
Challenges ‣ Foundation (existing infrastructure to cloud) ‣ Variability (DIY
to Hosted/Managed Service) ‣ Complexity ‣ Language ecosystems ‣ Growth
Challenges (cont.) ‣ Best practices / de facto standards ‣
Jargon ‣ Abstractions ‣ Hype CRISP-DM Attribution: IBM Cross-industry standard process for data mining 1996
4 Ecosystem Taxonomy Business Goals People Ethics Model creation Training
Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical
4 Ecosystem Julia Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical DrWatson.jl ParameterSchedulers.jl Pluto.jl IJulia JupyterLab nteract VSCode Plots.jl (Viz) Gadfly.jl (Viz) Makie.jl (Viz - GPU) Flux.jl (ML) Knet.jl (ML/BL) MLJ.jl (ML) Mocha.jl (ML/DL) Tensorflow.jl (ML/DL wrapper) JuMP (optimization) Dataframes.jl ProgressMeters.jl
4 Ecosystem Python Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Workflow Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical Dask JupyterHub Binder Kubernetes papermill Dagster Airflow prefect scipy statsmodel JupyterLab nteract VSCode matplotlib seaborn altair plotly numpy scikit-learn pytorch tensorflow pandas PyJanitor dask datasette evidently bokeh panel voila dash python scripts napari geopandas feast keras fastai fairlearn
4 Ecosystem R Taxonomy Business Goals People Ethics Model creation
Training Testing Project Definition Data Collection Computation and Modeling Cleaning Labeling Validating Data Preparation Ingest Exploratory Analysis Descriptive statistics Visualization Evaluation Deploy at Scale Monitoring Share Results Revisit Goals Charts Reports Dashboard Web app Scheduling CI/CD Platform Metrics Comparison Satisfy goals Automation Infrastructure Model Observability Technical Business Ethical RStudio JupyterLab IRkernel ggplot tidyverse dplyr tidyr lubridate readr readxl googlesheets4 ggplot2 rmarkdown Shiny plumber purrr reticulate Keras Tensorflow sparklyr ropensci.org knitr forcats mlr3 CNTK theanos
Algorithmic Business Thinking (ABT) 5 Management Paul McDonagh-Smith MIT Sloan
School of Management https://mitsloan.mit.edu/faculty/directory/paul-mcdonagh-smith https://www.youtube.com/watch?v=bqtn2tYg-kw
@WillingCarol 25 Justine Dupont surfs the greatest wave of her
life in Nazaré, Portuga l © Rafael G. Riancho / Red Bull Content Poo l Got data at scale? Use open source tools.
web: noteable.io email: carol AT noteable.io twitter: @WillingCarol github: willingc
Thank you The Open Source Data Tooling Landscape Carol Willing VP of Learning Noteable
6 Additional Resources https://krzjoa.github.io/awesome-python-data-science/#/ https://github.com/FavioVazquez/ds-cheatsheets https://www.the-modeling-agency.com/crisp-dm.pdf https://github.com/academic/awesome-datascience