Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
衛星データ X 機械学習
Search
tellus
December 05, 2019
Technology
0
120
衛星データ X 機械学習
12/5開催のTellus Satellite Cafeの資料となります。
※2次配布禁止
tellus
December 05, 2019
Tweet
Share
More Decks by tellus
See All by tellus
Tellusに搭載の衛星データについて
xdp
0
460
Tellusを使った衛星データ解析事例紹介
xdp
0
86
衛星データの基礎_20190930
xdp
0
280
衛星データの基礎_20190801
xdp
0
200
Other Decks in Technology
See All in Technology
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
120
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
140
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
1.8k
Database イノベーショントークを振り返る/reinvent-2025-database-innovation-talk-recap
emiki
0
230
エンジニアリングをやめたくないので問い続ける
estie
2
1.2k
Fashion×AI「似合う」を届けるためのWEARのAI戦略
zozotech
PRO
2
870
日本Rubyの会: これまでとこれから
snoozer05
PRO
4
160
[デモです] NotebookLM で作ったスライドの例
kongmingstrap
0
160
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
0
320
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
380
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
250
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
170
Featured
See All Featured
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
160
How to Think Like a Performance Engineer
csswizardry
28
2.4k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Site-Speed That Sticks
csswizardry
13
1k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
75
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Become a Pro
speakerdeck
PRO
31
5.7k
Automating Front-end Workflow
addyosmani
1371
200k
Skip the Path - Find Your Career Trail
mkilby
0
22
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Transcript
自己紹介 養王田 一尚 (よおだ かずひさ) Tellusのエンジニア 兼 宙畑のライター 主に「ゼロからのTellusの使い方」シリーズを執筆
衛星データ X 機械学習
Pythonを書いた経験がある
機械学習やったことある
お仕事で機械学習を使っている
せっかく取得したタイルが 雲ばかりで地上が見えない
雲の有無でタイルを分類する clear cloudy
事前準備1 AVNIR-2のTile画像を取得しよう コードは後日Slackで共有いたします
搭載衛星データ ALOS (AVNIR-2) 光学 10m 4band
範囲を緯度経度で指定 トークンを設定(マイページで確認) Jupyter LabでAVNIR-2のシーン情報を取得しよう
rspId, productIdは画像を呼び出す際に必要 OS上でも「メタデータ詳細」で確認することができる
バンド選択 トークンを設定 Jupyter LabでAVNIR-2のタイル画像を取得しよう 地図タイルの座標
ズーム率 タイル枚数 座標サンプル タイル座標(x, y) タイルの左上の経度緯度 0 1 (0, 0)
=> (-180, 85.0511) 1 4 (0, 1) => (-180, 0) (1, 0) => (0, 85.0511) (1, 1) => (0, 0) 2 16 (0, 1) => (-180, 66.5133) (0, 2) => (-180, 0) (0, 3) => (-180, -66.5133) (2, 1) => (0, 66.5133) ... 12 16777216 (3638, 1613) => (139.7461, 35.3890) Webメルカトル地図を256×256ピクセルの正方形に切 り分けたものです。 座標(x, y)とズーム率(z)により指定します。 タイル地図とは
指定した緯度経度を含むタイル座標を返す 緯度経度からタイル座標を求める
指定したシーンからタイル画像が切り出される
事前準備2 教師データを作ろう
1. 大量にタイルを取得する。 今回は約3000枚用意 2.「晴れ」「曇り」「判別が難しい」の3種類に画像を人の目で(!)分類する。 今回は晴れが600枚、曇が1000枚でした。 3. 分類した「晴れ」と「曇り」の画像を 「学習用」「訓練時検証用」「評価用」に分ける。 dataset ┣
train (学習用) ┃ ┣ clear ┃ ┗ cloudy ┃ ┣ validation (訓練時検証用) ┃ ┣ clear ┃ ┗ cloudy ┃ ┗ test (評価用) ┣ clear ┗ cloudy clear cloudy ng
TensorFlow(+Keras)で機械学習
モデルの作成 畳み込みニューラルネットワーク 画像サイズ
WARNINGが出ますが問題ありません。 層の数や次元の数は試行錯誤のしどころ 畳み込みニューラルネットワークについてもっと勉強したい人には 以下の記事がおすすめ https://kenyu-life.com/2019/03/07/convolutional_neural_network/ https://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer- vision-introduction-convolution-neural-networks/
学習データの読込み 回転や拡大縮小によりデータを水増し 2 classes以外の結果が出た場合、不要なディレクトリが含まれている可能性があります。 詳しくはKerasのチュートリアルを参照 https://keras.io/ja/
学習実行 モデル一時保存 1回あたりの試行回数と繰り返し回数 いざ実行
約6時間かかりました
正解率85%! 結果 繰り返し回数は半分の 10回程度でよかったかも
評価用データでも約88%の正解率を達成!
晴れ判定(0.5未満)
曇り判定(0.5以上)
薄曇りも正しく判定
雪があっても正しく判定
やや自信なし?
たまに誤判定も?
雲の有無でタイルを分類する clear cloudy 8割を超える精度で達成! パラメータを試行錯誤して目指せ9割超え
衛星データであそぼう 本日のコードはSlackで後日共有します