Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
衛星データ X 機械学習
Search
tellus
December 05, 2019
Technology
0
120
衛星データ X 機械学習
12/5開催のTellus Satellite Cafeの資料となります。
※2次配布禁止
tellus
December 05, 2019
Tweet
Share
More Decks by tellus
See All by tellus
Tellusに搭載の衛星データについて
xdp
0
460
Tellusを使った衛星データ解析事例紹介
xdp
0
86
衛星データの基礎_20190930
xdp
0
280
衛星データの基礎_20190801
xdp
0
210
Other Decks in Technology
See All in Technology
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.6k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
150
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
ECS障害を例に学ぶ、インシデント対応に備えたAIエージェントの育て方 / How to develop AI agents for incident response with ECS outage
iselegant
4
350
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
150
Red Hat OpenStack Services on OpenShift
tamemiya
0
130
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
260
AWS DevOps Agent x ECS on Fargate検証 / AWS DevOps Agent x ECS on Fargate
kinunori
2
150
Featured
See All Featured
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
71
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
87
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Ethics towards AI in product and experience design
skipperchong
2
200
[SF Ruby Conf 2025] Rails X
palkan
1
760
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
310
Testing 201, or: Great Expectations
jmmastey
46
8.1k
Producing Creativity
orderedlist
PRO
348
40k
Transcript
自己紹介 養王田 一尚 (よおだ かずひさ) Tellusのエンジニア 兼 宙畑のライター 主に「ゼロからのTellusの使い方」シリーズを執筆
衛星データ X 機械学習
Pythonを書いた経験がある
機械学習やったことある
お仕事で機械学習を使っている
せっかく取得したタイルが 雲ばかりで地上が見えない
雲の有無でタイルを分類する clear cloudy
事前準備1 AVNIR-2のTile画像を取得しよう コードは後日Slackで共有いたします
搭載衛星データ ALOS (AVNIR-2) 光学 10m 4band
範囲を緯度経度で指定 トークンを設定(マイページで確認) Jupyter LabでAVNIR-2のシーン情報を取得しよう
rspId, productIdは画像を呼び出す際に必要 OS上でも「メタデータ詳細」で確認することができる
バンド選択 トークンを設定 Jupyter LabでAVNIR-2のタイル画像を取得しよう 地図タイルの座標
ズーム率 タイル枚数 座標サンプル タイル座標(x, y) タイルの左上の経度緯度 0 1 (0, 0)
=> (-180, 85.0511) 1 4 (0, 1) => (-180, 0) (1, 0) => (0, 85.0511) (1, 1) => (0, 0) 2 16 (0, 1) => (-180, 66.5133) (0, 2) => (-180, 0) (0, 3) => (-180, -66.5133) (2, 1) => (0, 66.5133) ... 12 16777216 (3638, 1613) => (139.7461, 35.3890) Webメルカトル地図を256×256ピクセルの正方形に切 り分けたものです。 座標(x, y)とズーム率(z)により指定します。 タイル地図とは
指定した緯度経度を含むタイル座標を返す 緯度経度からタイル座標を求める
指定したシーンからタイル画像が切り出される
事前準備2 教師データを作ろう
1. 大量にタイルを取得する。 今回は約3000枚用意 2.「晴れ」「曇り」「判別が難しい」の3種類に画像を人の目で(!)分類する。 今回は晴れが600枚、曇が1000枚でした。 3. 分類した「晴れ」と「曇り」の画像を 「学習用」「訓練時検証用」「評価用」に分ける。 dataset ┣
train (学習用) ┃ ┣ clear ┃ ┗ cloudy ┃ ┣ validation (訓練時検証用) ┃ ┣ clear ┃ ┗ cloudy ┃ ┗ test (評価用) ┣ clear ┗ cloudy clear cloudy ng
TensorFlow(+Keras)で機械学習
モデルの作成 畳み込みニューラルネットワーク 画像サイズ
WARNINGが出ますが問題ありません。 層の数や次元の数は試行錯誤のしどころ 畳み込みニューラルネットワークについてもっと勉強したい人には 以下の記事がおすすめ https://kenyu-life.com/2019/03/07/convolutional_neural_network/ https://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer- vision-introduction-convolution-neural-networks/
学習データの読込み 回転や拡大縮小によりデータを水増し 2 classes以外の結果が出た場合、不要なディレクトリが含まれている可能性があります。 詳しくはKerasのチュートリアルを参照 https://keras.io/ja/
学習実行 モデル一時保存 1回あたりの試行回数と繰り返し回数 いざ実行
約6時間かかりました
正解率85%! 結果 繰り返し回数は半分の 10回程度でよかったかも
評価用データでも約88%の正解率を達成!
晴れ判定(0.5未満)
曇り判定(0.5以上)
薄曇りも正しく判定
雪があっても正しく判定
やや自信なし?
たまに誤判定も?
雲の有無でタイルを分類する clear cloudy 8割を超える精度で達成! パラメータを試行錯誤して目指せ9割超え
衛星データであそぼう 本日のコードはSlackで後日共有します