Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計の基礎8 対応のある一元分散分析
Search
xjorv
January 30, 2021
Education
0
270
統計の基礎8 対応のある一元分散分析
統計の基礎8では、3群以上の平均値の差の検定である、一元分散分析において、同一の対象から各群のデータを取得した場合(対応のある場合)の分析方法について説明します。
xjorv
January 30, 2021
Tweet
Share
More Decks by xjorv
See All by xjorv
コンパートメントモデル
xjorv
1
5.4k
コンパートメントモデルをStanで解く
xjorv
0
440
生物学的同等性試験 検出力の計算法
xjorv
0
3.4k
生物学的同等性試験ガイドライン 同等性パラメータの計算方法
xjorv
0
6k
粉体特性2
xjorv
0
2.4k
粉体特性1
xjorv
0
2.8k
皮膜5
xjorv
0
2.2k
皮膜4
xjorv
0
2.1k
皮膜3
xjorv
0
2.1k
Other Decks in Education
See All in Education
Pythonパッケージ管理 [uv] 完全入門
mickey_kubo
20
13k
プログラミング教育する大学、ZEN大学
sifue
1
530
技術勉強会 〜 OAuth & OIDC 入門編 / 20250528 OAuth and OIDC
oidfj
5
1.2k
SARA Annual Report 2024-25
sara2023
1
180
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
290
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
2
410
生成AI
takenawa
0
4.1k
Tangible, Embedded and Embodied Interaction - Lecture 7 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.7k
サンキッズゾーン 春日井駅前 ご案内
sanyohomes
0
290
The Art of Note Taking
kanaya
1
130
IMU-00 Pi
kanaya
0
360
Are puppies a ranking factor?
jonoalderson
0
810
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
How to Ace a Technical Interview
jacobian
277
23k
GitHub's CSS Performance
jonrohan
1031
460k
Site-Speed That Sticks
csswizardry
10
650
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Being A Developer After 40
akosma
90
590k
Building an army of robots
kneath
306
45k
Optimizing for Happiness
mojombo
379
70k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Transcript
統計の基礎8 対応のある一元分散分析 2021/1/5 Ver. 1.0
対応のある一元分散分析とは? 測定対象に繰り返しがある場合の分散分析 上記の表で、各教科の間の差はあるかどうか? 教科 算数 国語 英語 Aさん 55 57
76 Bさん 68 37 75 Cさん 59 78 78 Dさん 59 60 80 Eさん 55 79 53
対応のある一元分散分析とは? 左は測定対象は独立だが、右は横方向に関連づいている 1組 2組 3組 55 57 76 68 37
75 59 78 78 59 60 80 55 79 53 教科 算数 国語 英語 Aさん 55 57 76 Bさん 68 37 75 Cさん 59 78 78 Dさん 59 60 80 Eさん 55 79 53 対応なし 対応あり
変動要因の分配 変動要因の群間・群内への分配が変化する 全体の変動=測定対象間の誤差変動+ 測定対象内の誤差変動 測定対象内の変動要因 群間の変動要因+ 教科 算数 国語 英語
Aさん 55 57 76 Bさん 68 37 75 Cさん 59 78 78 Dさん 59 60 80 Eさん 55 79 53
分散比の計算対象 変動要因の群間・群内への分配が変化する 全体の変動=測定対象間の誤差変動+ 測定対象内の誤差変動 測定対象内の変動要因 群間の変動要因+ 測定対象内の誤差変動 群間の変動要因 が分散比として検討する対象となる
教科 1組 2組 3組 偏差平方和 Aさん 55 57 76 268.6667
Bさん 68 37 75 818 Cさん 59 78 78 240.6667 Dさん 59 60 80 280.6667 Eさん 55 79 53 418.6667 偏差平方和 112.8 1198.8 485.2 全体の偏差平方和 2275.6 教科の偏差平方和 1796.8 学生の偏差平方和 2026.667 偏差平方和の計算 偏差平方和(分散×自由度)を用いる
偏差平方和の分配 偏差平方和を群間・測定対象間に分ける 全体の偏差平方和=群内の偏差平方和+群間の偏差平方和 2275.6 1796.8 478.8 = + 全体の偏差平方和=対象内の偏差平方和+対象間の偏差平方和 2275.6
2026.667 248.8 = +
残りの偏差平方和(残差) 群内・対象内以外の偏差平方和を別に計算する 全体=群間 + 対象間 + その他 2275.6 478.8 =
+ 248.8 + 1547.9 残差の偏差平方和と呼び、対象内の誤差要因として扱う
自由度 群間・測定対象間の自由度をそれぞれ計算する 群間の自由度は グループ数 - 1 測定対象間の自由度は 測定対象数 - 1
群間自由度は 測定対象間自由度は 3グループ - 1 = 2 5 - 1 = 4 になる 教科 算数 国語 英語 Aさん 55 57 76 Bさん 68 37 75 Cさん 59 78 78 Dさん 59 60 80 Eさん 55 79 53
分散分析表 群間・対照間の偏差平方和・自由度をまとめたもの 偏差平方和 自由度 不偏分散 分散比 群間 478.8 2 239.4
1.237 対象間 248.9 4 62.23 残差 1547.9 8 193.48 不偏分散は 分散比は 偏差平方和/自由度 群間不偏分散/残差不偏分散 で計算する *残差の自由度は15-群間自由度-対象間自由度-1で計算する
分散分析における仮説検証 平均値の差を検定する 帰無仮説 対立仮説 全グループの平均値は同じ 全グループの平均値は同じではない 分散比と2つの自由度を持つF分布から 全グループの平均値が同じである確率 を計算する
分散比とp値 自由度が2と8、分散比が1.237となる確率がp値 これがp値 p値が0.05より大きいので、差があるとは言えない と結論づける *p値は自由度2と8のF分布から計算する
対応のある1元と2元の分散分析 もう一つp値がある p値? 計算は2元の分散分析と同じ (教科×学生、交互作用なし) 学生間の差を計算している *学生間のF値は対象間不偏分散/残差不偏分散で計算し、p値は自由度が4と8のF分布から計算する