Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIにコードを生成するコードを作らせて、再現性を担保しよう! / Let AI generat...
Search
Yusuke Yamada
May 27, 2025
Programming
8
6.6k
AIにコードを生成するコードを作らせて、再現性を担保しよう! / Let AI generate code to ensure reproducibility
TSKaigi 2025 After Night 〜セッションおかわりの会!〜 で発表したLT資料です。
https://bitkey.connpass.com/event/351174/
Yusuke Yamada
May 27, 2025
Tweet
Share
More Decks by Yusuke Yamada
See All by Yusuke Yamada
VS CodeとGitHub Copilotで爆速開発!アップデートの波に乗るおさらい会 / Rapid Development with VS Code and GitHub Copilot: Catch the Latest Wave
yamachu
3
860
HybridWebViewでJSベースのView開発 / Development JavaScript based View with HybridWebView
yamachu
0
610
Enterprise以外でもMergeQueueしたい! / Use Merge Queue without GitHub Enterprise
yamachu
0
170
Web開発者におくる .NET 7時代の .NET WebAssemblyとの付き合い方
yamachu
0
160
Other Decks in Programming
See All in Programming
decksh - a little language for decks
ajstarks
4
21k
一人でAIプロダクトを作るための工夫 〜技術選定・開発プロセス編〜 / I want AI to work harder
rkaga
12
2.6k
AHC051解法紹介
eijirou
0
510
Amazon Q CLI開発で学んだAIコーディングツールの使い方
licux
3
180
新世界の理解
koriym
0
130
バイブコーディング × 設計思考
nogu66
0
120
技術的負債で信頼性が限界だったWordPress運用をShifterで完全復活させた話
rvirus0817
1
1.6k
Comparing decimals in Swift Testing
417_72ki
0
170
Reactの歴史を振り返る
tutinoko
1
180
Introduction to Git & GitHub
latte72
0
110
Portapad紹介プレゼンテーション
gotoumakakeru
1
130
「リーダーは意思決定する人」って本当?~ 学びを現場で活かす、リーダー4ヶ月目の試行錯誤 ~
marina1017
0
220
Featured
See All Featured
For a Future-Friendly Web
brad_frost
179
9.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Why Our Code Smells
bkeepers
PRO
338
57k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Producing Creativity
orderedlist
PRO
347
40k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
We Have a Design System, Now What?
morganepeng
53
7.7k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Transcript
AIにコードを生成するコードを作らせて、 再現性を担保しよう! TSKaigi 2025 After Night 〜セッションおかわりの会!〜 / LT
{ "name": "Yusuke Yamada (ちゅうこ, yamachu )", "workAt": " 株式会社CARTA
HOLDINGS", "interests": [ "TypeScript", "C#", "Scala", "VS Code" ], "accounts": { "X": "@y_chu5", "GitHub": "yamachu" } } 自己紹介 2
でも…こんな経験ありませんか? 型が合わなかったり、シンタックスエラー起こしたり 一度直しても、別のファイルに適用すると同じ指針で編集してくれない モデルや時期で結果がブレる… 一括でドン!といくならいいかもしれないが… AIには「型の理解」と「再現性」は難しい? 1. はじめに:AIでのマイグレーション「あるある」 古いコードのマイグレーション、AIに任せたいですよね? 3
AI Agentに対して、コードを直接書き換えることを期待しがち ここの制御が難しい ↓ AI様に、人間のエンジニアが行うような振る舞いのステージに降りてきてもらう マイグレーション手順を示し マイグレーションスクリプトを生成し テストケースを追加したり つまり、 「コードを生成するコード」
の実装なら私達も理解できて、再現も出来る? 2. 仮説:AIに「コードを生成するコード」を作らせるのはどうか 4
「コードを生成するコード」 、ts-morphを使ったスクリプト…ってコト!? 5
今回は material-ui の非推奨となった makeStyles 関数から、MUI v5 の SxProps への マイグレーションを例として紹介します
もちろんマイグレーションには ts-morph を使用します 養殖コードはこちら https://github.com/yamachu/play-ts-morph 3. アプローチ:実践編 6
マイグレーション対象のコードを把握する どんなコードがあるか? どんなパターンがあるか? どのような変更が必要か? 地道にコードを見るだけでなく、例えば GitHub Copilot で以下のように調べるのも良 い @workspace
makeStylesを使用しているコンポーネントで、呼び出し方のパター ンや命名規則などのパターンを知りたいです。 ステップ1: コードの把握とパターン抽出 7
Before: makeStyles のコード例 import makeStyles from '@mui/styles/makeStyles'; const useStyles =
makeStyles((theme) => ({ // theme 非依存のスタイル root: { display: 'flex', }, // theme 依存のスタイル info: { padding: theme.spacing(1, 2), backgroundColor: theme.palette.background.default, }, })); // const classes = useStyles(); // <Box className={classes.root}> // <Typography className={classes.info}>...</Typography> // </Box> 8
After: SxProps への変換例 import { SxProps, Theme } from '@mui/material';
const rootStyles: SxProps = { display: 'flex', }; const infoStyles: SxProps<Theme> = (theme) => ({ padding: theme.spacing(1, 2), backgroundColor: theme.palette.background.default, }); // <Box sx={rootStyles}> // <Typography sx={infoStyles}>...</Typography> // </Box> 9
AIとの対話で「マイグレーションスクリプトのプラン」を策定 いきなりコードを書かせず、まず「変換処理を行うプロンプト」を作成 そのプロンプトを元に、AIに「ts-morphを使って、どういうプランで書ける か」を提案させる ポイント:1ステップの粒度を細かく刻む プランを作ってもらうと、ファイル変換処理の流れが提案される 例: ファイル抽出 → AST解析
→ ノード変換 → コード出力 これでも粗いので、さらに細分化するとデバッグしやすい このプランから、自分が想定していないケースも出てくることがある (ここのやり取りを見せたかったのですが、Chatログ紛失してしまいました…) ステップ2: プロンプト作成と実装プランニング 10
AIに実装させる際の工夫 各ステップに「テストケース(入出力ペア) 」を渡す 関数実装の際にも、その入力ケースの処理パターンをjsdocなどに記載させる のも良い 実装したコードで、実際にmigrationを都度Agentで走らせる 自律的に修正するループが生まれる 例外的なパターンは人間が対応する方がコスト的に良いので、早々に諦めさ せる 4.
実装 11
長いタスク指示〜〜各書き換えを行った後make runを実行して試してください。 実行結果にTypeScriptのproblemsが出力されるので、それを元にコードの改善を 行ってください。 12
AST操作系のコード意外と書いてくれる 割とニッチなコードだし学習データが少ないのではと思ったけど、意外と書 いてくれる 若干TS Compiler APIと混同したりするけど、自分で直せるレベルのもの 型システムによる「ガードレール」は強い ts-morphでコードを生成するため、手でtemplate書くよりも安全 型チェックエラー =
考慮漏れのパターン発見! とみなせる 5. 所感 13
今回の取り組みのメリット 「コードを作るコード」で再現性を担保できた 型との組み合わせで変更パターンを列挙しやすくなった AIとの「協調」の重要性 AIはコードや型を完全に理解しているわけではない 人間が「仕組み」として支援することで、一定の軌道修正は出来そう 今後のAIの進化に期待しつつ、エンジニアが「ガードレール」を敷く役割は 重要 TypeScriptに限って言えば… 例えばTypeScript
Compiler APIのMCP Serverとかが出てきたら? ScalaだとMetalsが実装済み 6. まとめと今後の期待 14