Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
robust logprocessing
Search
Daisuke Yamazaki
January 16, 2011
Technology
1
62
robust logprocessing
安全にスケールするログ解析システムの勘所
Daisuke Yamazaki
January 16, 2011
Tweet
Share
More Decks by Daisuke Yamazaki
See All by Daisuke Yamazaki
ゼロトラブルへの道
yamaz
22
8.5k
RWC2019 rubyによる超大量データ配信
yamaz
1
170
学び実践してきたこと
yamaz
1
320
スケールアウト再考
yamaz
1
320
RTB 30 min
yamaz
0
97
RailsとCで広告システムを作って起業した話
yamaz
1
270
adserver 30min
yamaz
0
76
Other Decks in Technology
See All in Technology
アウトプットから始めるOSSコントリビューション 〜eslint-plugin-vueの場合〜 #vuefes
bengo4com
3
1.8k
re:Inventに行くまでにやっておきたいこと
nagisa53
0
640
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
14
82k
20251027_findyさん_音声エージェントLT
almondo_event
2
480
re:Invent 2025の見どころと便利アイテムをご紹介 / Highlights and Useful Items for re:Invent 2025
yuj1osm
0
260
OPENLOGI Company Profile for engineer
hr01
1
45k
ラスベガスの歩き方 2025年版(re:Invent 事前勉強会)
junjikoide
0
470
マルチエージェントのチームビルディング_2025-10-25
shinoyamada
0
200
AI時代の開発を加速する組織づくり - ブログでは書けなかったリアル
hiro8ma
2
340
CNCFの視点で捉えるPlatform Engineering - 最新動向と展望 / Platform Engineering from the CNCF Perspective
hhiroshell
0
140
AI-Readyを目指した非構造化データのメダリオンアーキテクチャ
r_miura
1
340
AIプロダクトのプロンプト実践テクニック / Practical Techniques for AI Product Prompts
saka2jp
0
120
Featured
See All Featured
Producing Creativity
orderedlist
PRO
347
40k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Scaling GitHub
holman
463
140k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
What's in a price? How to price your products and services
michaelherold
246
12k
Mobile First: as difficult as doing things right
swwweet
225
10k
YesSQL, Process and Tooling at Scale
rocio
173
15k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Practical Orchestrator
shlominoach
190
11k
For a Future-Friendly Web
brad_frost
180
10k
Optimizing for Happiness
mojombo
379
70k
Transcript
安全にスケールするログ解析システム 構築の勘所 1 株式会社 スケールアウト 山崎大輔
はじめに 1. スケーラブルなログ集計を安全に構築するために我々が考慮している ことを説明します。 2. 広告集計という特性上、「超高速にかつ高効率に!」というよりはどち らかというと「多少の非効率は目をつぶって安全側に寄せる」という設 計方針になっています。 3. 上司から突然「来月から1日10億越えのアクセスを食うことになるから
集計システムはよろしくね♪」という日が来るかもしれないので、来た る日に備えてもらえればと思います。 2
アジェンダ n 自己紹介 n ログ集計の実際 n ログ集計の各パートで考慮していること n まとめ 3
自己紹介 山崎大輔 Twitter: @yamaz Blog : 最速配信研究会 http://d.hatena.ne.jp/yamaz/ 現在:株式会社スケールアウト 代表
1日数億~を超えるような配信をカジュアルに行うための 広告配信システム「ScaleAds」の開発と販売およびコンサル かれこれオンライン広告業界で14年やってます 4
広告集計で行っている典型的 な処理 n 分散処理ができるもの n PageView集計など n 分散処理しにくく、依存関係がないもの n 1日分のUU(UniqueUser)集計
n 分散処理できず、データの依存関係があるもの n 積算UU集計など 5
システム構成(分散が効くもの) 6 配信サーバ 集計サーバ レポートサーバ(RDB) 生ログ 中間集計ログ
システム構成(分散が効かないもの) 7 配信サーバ 集計クラスタ(Hadoop) レポートサーバ(RDB) 生ログ
処理全体で意識すべきこと 集計処理全体でどのサーバにどう処理を負担させるべき かを強く意識する 例: 集計サーバ側での巨大テーブル同士のJOINは大変 解決案: JOIN相当が行われた状態でログをはき出す JOIN演算をフロントサーバに寄せることで、 JOIN演算の計算リソースと時間を分散する (ただしディスクは食う)
8
ログローテート n 定期的なログローテーション(現在は1時間 に一度) n ランダムローテーション(全台同時に落とし て対応するHTTPDがいなくなる状態を避 ける) 9
中間集計 ログローテーション後、分散処理が効く集計に関 しては速やかに同一サーバ(=配信サーバ)で 中間集計を行う 利点: 配信サーバが配信と中間処理のコストを 負うので、全体が間に合うようにサーバを足す だけ勝手にスケールする。 10
ログトランスファー n あんまりよくない方法 1日終わった後に全部のログを集める →集計開始時間が無駄に遅くなる n よりよい方法 ローテーション回数を増やし、時間分割して集まってない 奴だけを集める 11
ログトランスファーその2 n よりよいかもしれない方法 ログをそのままネットワークを介してデータストレージに書き 込む(Facebook Scribeなど) 利点: 帯域利用の平滑化が達成される (ログの二重書き込みの可能性を排除できなかった ため、弊社では不採用)
(注) 広告集計上まずいこと ログの二重カウント>> (越えられない壁) >>ログのロスト > 集計が間に合わない > その他 12
本集計 n 集計の冪等性を強く意識する 冪等性(べきとうせい: idempotence) ある操作を1回行っても複数回行っても結果が同じである ことをいう概念 n → 冪等性があって分割処理をしやすい集計はスケール
しやすい n 冪等性のあるなし/分割処理のしやすさによって処理を分 ける 13
本集計 n 冪等性あり/分割処理しやすい(例: PageViewカウント) → フロントサーバで中間集計し、本集計でマージ処理 (中間集計で大部分の処理が完了しているので、 処理は5 分程度) n
冪等性ちょっとあり/分割処理しにくい( 例: UniqueUserカウント) Hadoopクラスタにデータを載せて集計 n 冪等性なし/分割処理しにくい(例: 積算UUカウント) Hadoopクラスタにデータを載せて集計 14
日々の運用について n キャパシティプランニング n 人的依存の排除 n 集計系に過度な期待をかけない 15
キャパシティプランニング 今後の伸びだけでなく、日常的に再集計がおきうる ことも加味する よくない例 1日の集計が20時間かかる →再集計にかけられる時間が1日4時間しかない →1日の集計遅れを取り返すのに5日かかる →週明けに金曜の集計ミスが起きたら事実上アウト 弊社の例)8時間で完了するようにプランニングする 16
人的依存の排除 n 冪等性がある集計なら誰がいつ実行しても問題ないよう にする。 n 集計側を過度に複雑なシステムにて復旧にノウハウが必 要なようにはしない 繊細な条件でしか動かないようなシステムは よくないシステム(やかんはこわれないよ) 17
集計系に過度な負荷をかけな い n NOSQLベースだとJOIN演算がきつくなるので、ログ作成及びETL 側で工夫する ログ作成側(Webサーバ)でJOIN演算相当を行ってログ1行に極力 すべてのデータがあるようにする(これはJoin演算をアクセス側 に寄せているのと同じ) n 過度な最適化はあきらめる
最近のハードウェアは速く、単純な仕組みでも十分速い。 なので複雑な仕組みを導入しないと速度が上がらないようなら アーキテクチャやハードウェアの選定が間違っている可能性も 考えましょう 18
まとめ n ログ集計に際して弊社で考慮していることを 簡単に説明しました。 メンバー募集中です!大量配信・大規模集計やりたい方は ぜひ。 バイト・インターンも可です(
[email protected]
まで) 19