Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
robust logprocessing
Search
Daisuke Yamazaki
January 16, 2011
Technology
1
91
robust logprocessing
安全にスケールするログ解析システムの勘所
Daisuke Yamazaki
January 16, 2011
Tweet
Share
More Decks by Daisuke Yamazaki
See All by Daisuke Yamazaki
ゼロトラブルへの道
yamaz
22
8.6k
RWC2019 rubyによる超大量データ配信
yamaz
1
190
学び実践してきたこと
yamaz
1
340
スケールアウト再考
yamaz
1
350
RTB 30 min
yamaz
0
110
RailsとCで広告システムを作って起業した話
yamaz
1
320
adserver 30min
yamaz
0
110
Other Decks in Technology
See All in Technology
サイボウズ 開発本部採用ピッチ / Cybozu Engineer Recruit
cybozuinsideout
PRO
10
73k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
130
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
1
300
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
600
GCASアップデート(202510-202601)
techniczna
0
250
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
5
4.9k
Mosaic AI Gatewayでコーディングエージェントを配るための運用Tips / JEDAI 2026 新春 Meetup! AIコーディング特集
genda
0
150
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
110
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.3k
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
190
生成AI時代にこそ求められるSRE / SRE for Gen AI era
ymotongpoo
5
2.7k
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
110
Building Adaptive Systems
keathley
44
2.9k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
50
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
820
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
From π to Pie charts
rasagy
0
120
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
640
Un-Boring Meetings
codingconduct
0
200
Transcript
安全にスケールするログ解析システム 構築の勘所 1 株式会社 スケールアウト 山崎大輔
はじめに 1. スケーラブルなログ集計を安全に構築するために我々が考慮している ことを説明します。 2. 広告集計という特性上、「超高速にかつ高効率に!」というよりはどち らかというと「多少の非効率は目をつぶって安全側に寄せる」という設 計方針になっています。 3. 上司から突然「来月から1日10億越えのアクセスを食うことになるから
集計システムはよろしくね♪」という日が来るかもしれないので、来た る日に備えてもらえればと思います。 2
アジェンダ n 自己紹介 n ログ集計の実際 n ログ集計の各パートで考慮していること n まとめ 3
自己紹介 山崎大輔 Twitter: @yamaz Blog : 最速配信研究会 http://d.hatena.ne.jp/yamaz/ 現在:株式会社スケールアウト 代表
1日数億~を超えるような配信をカジュアルに行うための 広告配信システム「ScaleAds」の開発と販売およびコンサル かれこれオンライン広告業界で14年やってます 4
広告集計で行っている典型的 な処理 n 分散処理ができるもの n PageView集計など n 分散処理しにくく、依存関係がないもの n 1日分のUU(UniqueUser)集計
n 分散処理できず、データの依存関係があるもの n 積算UU集計など 5
システム構成(分散が効くもの) 6 配信サーバ 集計サーバ レポートサーバ(RDB) 生ログ 中間集計ログ
システム構成(分散が効かないもの) 7 配信サーバ 集計クラスタ(Hadoop) レポートサーバ(RDB) 生ログ
処理全体で意識すべきこと 集計処理全体でどのサーバにどう処理を負担させるべき かを強く意識する 例: 集計サーバ側での巨大テーブル同士のJOINは大変 解決案: JOIN相当が行われた状態でログをはき出す JOIN演算をフロントサーバに寄せることで、 JOIN演算の計算リソースと時間を分散する (ただしディスクは食う)
8
ログローテート n 定期的なログローテーション(現在は1時間 に一度) n ランダムローテーション(全台同時に落とし て対応するHTTPDがいなくなる状態を避 ける) 9
中間集計 ログローテーション後、分散処理が効く集計に関 しては速やかに同一サーバ(=配信サーバ)で 中間集計を行う 利点: 配信サーバが配信と中間処理のコストを 負うので、全体が間に合うようにサーバを足す だけ勝手にスケールする。 10
ログトランスファー n あんまりよくない方法 1日終わった後に全部のログを集める →集計開始時間が無駄に遅くなる n よりよい方法 ローテーション回数を増やし、時間分割して集まってない 奴だけを集める 11
ログトランスファーその2 n よりよいかもしれない方法 ログをそのままネットワークを介してデータストレージに書き 込む(Facebook Scribeなど) 利点: 帯域利用の平滑化が達成される (ログの二重書き込みの可能性を排除できなかった ため、弊社では不採用)
(注) 広告集計上まずいこと ログの二重カウント>> (越えられない壁) >>ログのロスト > 集計が間に合わない > その他 12
本集計 n 集計の冪等性を強く意識する 冪等性(べきとうせい: idempotence) ある操作を1回行っても複数回行っても結果が同じである ことをいう概念 n → 冪等性があって分割処理をしやすい集計はスケール
しやすい n 冪等性のあるなし/分割処理のしやすさによって処理を分 ける 13
本集計 n 冪等性あり/分割処理しやすい(例: PageViewカウント) → フロントサーバで中間集計し、本集計でマージ処理 (中間集計で大部分の処理が完了しているので、 処理は5 分程度) n
冪等性ちょっとあり/分割処理しにくい( 例: UniqueUserカウント) Hadoopクラスタにデータを載せて集計 n 冪等性なし/分割処理しにくい(例: 積算UUカウント) Hadoopクラスタにデータを載せて集計 14
日々の運用について n キャパシティプランニング n 人的依存の排除 n 集計系に過度な期待をかけない 15
キャパシティプランニング 今後の伸びだけでなく、日常的に再集計がおきうる ことも加味する よくない例 1日の集計が20時間かかる →再集計にかけられる時間が1日4時間しかない →1日の集計遅れを取り返すのに5日かかる →週明けに金曜の集計ミスが起きたら事実上アウト 弊社の例)8時間で完了するようにプランニングする 16
人的依存の排除 n 冪等性がある集計なら誰がいつ実行しても問題ないよう にする。 n 集計側を過度に複雑なシステムにて復旧にノウハウが必 要なようにはしない 繊細な条件でしか動かないようなシステムは よくないシステム(やかんはこわれないよ) 17
集計系に過度な負荷をかけな い n NOSQLベースだとJOIN演算がきつくなるので、ログ作成及びETL 側で工夫する ログ作成側(Webサーバ)でJOIN演算相当を行ってログ1行に極力 すべてのデータがあるようにする(これはJoin演算をアクセス側 に寄せているのと同じ) n 過度な最適化はあきらめる
最近のハードウェアは速く、単純な仕組みでも十分速い。 なので複雑な仕組みを導入しないと速度が上がらないようなら アーキテクチャやハードウェアの選定が間違っている可能性も 考えましょう 18
まとめ n ログ集計に際して弊社で考慮していることを 簡単に説明しました。 メンバー募集中です!大量配信・大規模集計やりたい方は ぜひ。 バイト・インターンも可です(
[email protected]
まで) 19