Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML基本のキの一筆目
Search
yasu
June 18, 2019
Technology
0
78
ML基本のキの一筆目
機械学習とディープラーニングの区別がついていない人が多かったので書きました。(私のまわりだけ?)
また会話でよく出てくる用語について、調べてみた資料です。
yasu
June 18, 2019
Tweet
Share
More Decks by yasu
See All by yasu
Docker 危険のキ!/Docker the beginning of danger
yasu8899
1
240
Dockerとは
yasu8899
1
870
はじめての文字認識_改
yasu8899
1
490
rancheros-in-raspberrypi
yasu8899
2
450
5分で説明する RancherOS+Rancher2インストール / rancherosinstall
yasu8899
0
670
Other Decks in Technology
See All in Technology
Zero Trust DNS でより安全なインターネット アクセス
murachiakira
0
120
JAWS UG AI/ML #32 Amazon BedrockモデルのライフサイクルとEOL対応/How Amazon Bedrock Model Lifecycle Works
quiver
1
130
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
280
もう外には出ない。より快適なフルリモート環境を目指して
mottyzzz
14
11k
20251027_マルチエージェントとは
almondo_event
1
480
.NET 10のBlazorの期待の新機能
htkym
0
160
GraphRAG グラフDBを使ったLLM生成(自作漫画DBを用いた具体例を用いて)
seaturt1e
1
160
戦えるAIエージェントの作り方
iwiwi
10
4.4k
Dify on AWS 環境構築手順
yosse95ai
0
170
入院医療費算定業務をAIで支援する:包括医療費支払い制度とDPCコーディング (公開版)
hagino3000
0
120
ViteとTypeScriptのProject Referencesで 大規模モノレポのUIカタログのリリースサイクルを高速化する
shuta13
3
230
DSPy入門
tomehirata
6
620
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Docker and Python
trallard
46
3.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
630
How GitHub (no longer) Works
holman
315
140k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
The Language of Interfaces
destraynor
162
25k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
Writing Fast Ruby
sferik
630
62k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Transcript
ML基本のキの一筆目 令和元年 6月18日 oda@sendai
きっかけ 区別ついていますか。 ・機械学習(machine learning) ・深層学習(deep learning)
答え
機械学習と深層学習 ・機械学習 何を学習するか人が決める 複雑な問題は苦手 計算コストが低い ・深層学習 何を学習するかも含めて学習させられる 複雑な問題に対応できる 計算コストが高い
AI(artificial intelligence) コンピュータによる知的な情報処理システムの設計や実現に関す る「研究分野」。 人工知能 - Wikipedia https://ja.wikipedia.org/wiki/人工知能
機械学習(machine learning) 人間が持つ学習能力を機械で実現する「技術・手法」の総称であ る。 機械学習 - Wikipedia https://ja.wikipedia.org/wiki/機械学習
機械学習(machine learning) 従来のソフトは、プログラム通りに動作する。 機械学習は、与えられたデータから学習し、 自律的に共通する法則を見つけだす。
機械学習(machine learning) 手法の一例 ・決定木学習 ・相関ルール学習 ・ニューラルネットワーク ・遺伝的プログラミング ・サポートベクターマシン
ニューラルネットワーク (neural network) 機械学習の手法の一つで人間の脳の仕組みを模倣したもの。 ニューラルネットワーク - Wikipedia https://ja.wikipedia.org/wiki/ニューラルネットワーク
深層学習(deep learning) 多層のニューラルネットワークによる「機械学習手法」である。 重みづけを自動的に更新する。 ディープラーニング - Wikipedia https://ja.wikipedia.org/wiki/ディープラーニング
深層学習(deep learning) モデルの例 ・畳み込みニューラルネットワーク ・回帰型ニューラルネットワーク ・スタックドオートエンコーダ
単純パーセプトロン
多層パーセプトロン 単純パーセプトロンを、 複数組み合わせたもの。
深層学習(deep learning) deep learningは、 4層以上で構成されるもの。
モデル 数理モデルとは、系を微分方程式などの数学の言葉で記述したもの。 上記の意味はよくわからないが、よくあるものとして、 画像認識モデル・自然言語処理モデルなど。 数理モデル - Wikipedia https://ja.wikipedia.org/wiki/数理モデル
ラベル 問題と答えをセットにして学習させる場合の、 答えのことを「ラベル」と言う。 教師データと呼ぶこともある。 問題と答えを結びつける作業を「ラベル付け」と言う。
教師有り学習 与えられるデータが、何であるか or 正解・不正解 をセットにして 学習させる。 動物の写真に「犬である」「猫である」と、ラベルを付けて読み込ま せる。 類似データの予測を行う。
教師無し学習 データだけで学習させる。 動物の写真から猫の特徴、犬の特徴を学習する。 データの特徴・本質を学習させられる。
強化学習(Reinforcement learning) 環境内におけるエージェントが、現在の状態を観測し、 取るべき行動を決定する問題を扱う機械学習の一種。 エージェントは行動を選択することで環境から報酬を得る。 強化学習は一連の行動を通じて報酬が最も多く得られるような方 策(policy)を学習する。 強化学習 - Wikipedia
https://ja.wikipedia.org/wiki/強化学習
Python ・学習コストが低く、初心者にも使いやすい言語である。 ・ライブラリが多数ある。 NumPy、SciPy 高速な数値計算ライブラリ。 データサイエンスや科学技術コンピューティングに よく用いられていた。 pytorch、scikit-learn、Keras、TensorFlow 機械学習分野で用いる。
ML基本のキの一筆目 END