Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML基本のキの一筆目
Search
yasu
June 18, 2019
Technology
0
79
ML基本のキの一筆目
機械学習とディープラーニングの区別がついていない人が多かったので書きました。(私のまわりだけ?)
また会話でよく出てくる用語について、調べてみた資料です。
yasu
June 18, 2019
Tweet
Share
More Decks by yasu
See All by yasu
Docker 危険のキ!/Docker the beginning of danger
yasu8899
1
250
Dockerとは
yasu8899
1
880
はじめての文字認識_改
yasu8899
1
490
rancheros-in-raspberrypi
yasu8899
2
460
5分で説明する RancherOS+Rancher2インストール / rancherosinstall
yasu8899
0
700
Other Decks in Technology
See All in Technology
Cosmos World Foundation Model Platform for Physical AI
takmin
0
950
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
830
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
270
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
180
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
190
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2k
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.6k
KATA
mclloyd
PRO
34
15k
Accessibility Awareness
sabderemane
0
56
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
The agentic SEO stack - context over prompts
schlessera
0
640
The Invisible Side of Design
smashingmag
302
51k
[SF Ruby Conf 2025] Rails X
palkan
1
760
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Test your architecture with Archunit
thirion
1
2.2k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
Transcript
ML基本のキの一筆目 令和元年 6月18日 oda@sendai
きっかけ 区別ついていますか。 ・機械学習(machine learning) ・深層学習(deep learning)
答え
機械学習と深層学習 ・機械学習 何を学習するか人が決める 複雑な問題は苦手 計算コストが低い ・深層学習 何を学習するかも含めて学習させられる 複雑な問題に対応できる 計算コストが高い
AI(artificial intelligence) コンピュータによる知的な情報処理システムの設計や実現に関す る「研究分野」。 人工知能 - Wikipedia https://ja.wikipedia.org/wiki/人工知能
機械学習(machine learning) 人間が持つ学習能力を機械で実現する「技術・手法」の総称であ る。 機械学習 - Wikipedia https://ja.wikipedia.org/wiki/機械学習
機械学習(machine learning) 従来のソフトは、プログラム通りに動作する。 機械学習は、与えられたデータから学習し、 自律的に共通する法則を見つけだす。
機械学習(machine learning) 手法の一例 ・決定木学習 ・相関ルール学習 ・ニューラルネットワーク ・遺伝的プログラミング ・サポートベクターマシン
ニューラルネットワーク (neural network) 機械学習の手法の一つで人間の脳の仕組みを模倣したもの。 ニューラルネットワーク - Wikipedia https://ja.wikipedia.org/wiki/ニューラルネットワーク
深層学習(deep learning) 多層のニューラルネットワークによる「機械学習手法」である。 重みづけを自動的に更新する。 ディープラーニング - Wikipedia https://ja.wikipedia.org/wiki/ディープラーニング
深層学習(deep learning) モデルの例 ・畳み込みニューラルネットワーク ・回帰型ニューラルネットワーク ・スタックドオートエンコーダ
単純パーセプトロン
多層パーセプトロン 単純パーセプトロンを、 複数組み合わせたもの。
深層学習(deep learning) deep learningは、 4層以上で構成されるもの。
モデル 数理モデルとは、系を微分方程式などの数学の言葉で記述したもの。 上記の意味はよくわからないが、よくあるものとして、 画像認識モデル・自然言語処理モデルなど。 数理モデル - Wikipedia https://ja.wikipedia.org/wiki/数理モデル
ラベル 問題と答えをセットにして学習させる場合の、 答えのことを「ラベル」と言う。 教師データと呼ぶこともある。 問題と答えを結びつける作業を「ラベル付け」と言う。
教師有り学習 与えられるデータが、何であるか or 正解・不正解 をセットにして 学習させる。 動物の写真に「犬である」「猫である」と、ラベルを付けて読み込ま せる。 類似データの予測を行う。
教師無し学習 データだけで学習させる。 動物の写真から猫の特徴、犬の特徴を学習する。 データの特徴・本質を学習させられる。
強化学習(Reinforcement learning) 環境内におけるエージェントが、現在の状態を観測し、 取るべき行動を決定する問題を扱う機械学習の一種。 エージェントは行動を選択することで環境から報酬を得る。 強化学習は一連の行動を通じて報酬が最も多く得られるような方 策(policy)を学習する。 強化学習 - Wikipedia
https://ja.wikipedia.org/wiki/強化学習
Python ・学習コストが低く、初心者にも使いやすい言語である。 ・ライブラリが多数ある。 NumPy、SciPy 高速な数値計算ライブラリ。 データサイエンスや科学技術コンピューティングに よく用いられていた。 pytorch、scikit-learn、Keras、TensorFlow 機械学習分野で用いる。
ML基本のキの一筆目 END