Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML基本のキの一筆目
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
yasu
June 18, 2019
Technology
0
79
ML基本のキの一筆目
機械学習とディープラーニングの区別がついていない人が多かったので書きました。(私のまわりだけ?)
また会話でよく出てくる用語について、調べてみた資料です。
yasu
June 18, 2019
Tweet
Share
More Decks by yasu
See All by yasu
Docker 危険のキ!/Docker the beginning of danger
yasu8899
1
250
Dockerとは
yasu8899
1
880
はじめての文字認識_改
yasu8899
1
490
rancheros-in-raspberrypi
yasu8899
2
460
5分で説明する RancherOS+Rancher2インストール / rancherosinstall
yasu8899
0
700
Other Decks in Technology
See All in Technology
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
120
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
140
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
270
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2k
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
180
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.6k
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
160
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
600
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
480
Featured
See All Featured
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
330
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Designing for Performance
lara
610
70k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Documentation Writing (for coders)
carmenintech
77
5.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
The SEO Collaboration Effect
kristinabergwall1
0
350
エンジニアに許された特別な時間の終わり
watany
106
230k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
The Invisible Side of Design
smashingmag
302
51k
Transcript
ML基本のキの一筆目 令和元年 6月18日 oda@sendai
きっかけ 区別ついていますか。 ・機械学習(machine learning) ・深層学習(deep learning)
答え
機械学習と深層学習 ・機械学習 何を学習するか人が決める 複雑な問題は苦手 計算コストが低い ・深層学習 何を学習するかも含めて学習させられる 複雑な問題に対応できる 計算コストが高い
AI(artificial intelligence) コンピュータによる知的な情報処理システムの設計や実現に関す る「研究分野」。 人工知能 - Wikipedia https://ja.wikipedia.org/wiki/人工知能
機械学習(machine learning) 人間が持つ学習能力を機械で実現する「技術・手法」の総称であ る。 機械学習 - Wikipedia https://ja.wikipedia.org/wiki/機械学習
機械学習(machine learning) 従来のソフトは、プログラム通りに動作する。 機械学習は、与えられたデータから学習し、 自律的に共通する法則を見つけだす。
機械学習(machine learning) 手法の一例 ・決定木学習 ・相関ルール学習 ・ニューラルネットワーク ・遺伝的プログラミング ・サポートベクターマシン
ニューラルネットワーク (neural network) 機械学習の手法の一つで人間の脳の仕組みを模倣したもの。 ニューラルネットワーク - Wikipedia https://ja.wikipedia.org/wiki/ニューラルネットワーク
深層学習(deep learning) 多層のニューラルネットワークによる「機械学習手法」である。 重みづけを自動的に更新する。 ディープラーニング - Wikipedia https://ja.wikipedia.org/wiki/ディープラーニング
深層学習(deep learning) モデルの例 ・畳み込みニューラルネットワーク ・回帰型ニューラルネットワーク ・スタックドオートエンコーダ
単純パーセプトロン
多層パーセプトロン 単純パーセプトロンを、 複数組み合わせたもの。
深層学習(deep learning) deep learningは、 4層以上で構成されるもの。
モデル 数理モデルとは、系を微分方程式などの数学の言葉で記述したもの。 上記の意味はよくわからないが、よくあるものとして、 画像認識モデル・自然言語処理モデルなど。 数理モデル - Wikipedia https://ja.wikipedia.org/wiki/数理モデル
ラベル 問題と答えをセットにして学習させる場合の、 答えのことを「ラベル」と言う。 教師データと呼ぶこともある。 問題と答えを結びつける作業を「ラベル付け」と言う。
教師有り学習 与えられるデータが、何であるか or 正解・不正解 をセットにして 学習させる。 動物の写真に「犬である」「猫である」と、ラベルを付けて読み込ま せる。 類似データの予測を行う。
教師無し学習 データだけで学習させる。 動物の写真から猫の特徴、犬の特徴を学習する。 データの特徴・本質を学習させられる。
強化学習(Reinforcement learning) 環境内におけるエージェントが、現在の状態を観測し、 取るべき行動を決定する問題を扱う機械学習の一種。 エージェントは行動を選択することで環境から報酬を得る。 強化学習は一連の行動を通じて報酬が最も多く得られるような方 策(policy)を学習する。 強化学習 - Wikipedia
https://ja.wikipedia.org/wiki/強化学習
Python ・学習コストが低く、初心者にも使いやすい言語である。 ・ライブラリが多数ある。 NumPy、SciPy 高速な数値計算ライブラリ。 データサイエンスや科学技術コンピューティングに よく用いられていた。 pytorch、scikit-learn、Keras、TensorFlow 機械学習分野で用いる。
ML基本のキの一筆目 END