Upgrade to Pro — share decks privately, control downloads, hide ads and more …

#イノベーション研究のための実践的データ分析 β. Python に慣れて, 回帰分析をやって...

#イノベーション研究のための実践的データ分析 β. Python に慣れて, 回帰分析をやって, SPARQL Endpoint を使おう

慶應義塾大学 経済学部 三田キャンパス 322教室
一橋大学 経済学研究科 原泰史
#イノベーション研究のための実践的データ分析 β. Python に慣れて, 回帰分析をやって, SPARQL Endpoint を使おう

yasushihara

July 10, 2019
Tweet

More Decks by yasushihara

Other Decks in Education

Transcript

  1. 自己紹介 • Yasushi HARA • 1998-2004 • TOYOTA NATIONAL COLLEGE

    OF TECHNOLOGY • 2000 • Exchange Student in Malaysia • 2002-2009 • CLARAONLINE, INC. • ICT Hosting Company, nowadays called Cloud system supplier • 2009-2015 • Institute of Innovation Research, HITOTSUBASHI UNIVERSITY • 2015-2017 • Science for RE-Designing Science, Technology and Innovation Policy Center, National Graduate Institute for Policy Studies (GRIPS) / NISTEP / Hitotsubashi UNIVERSITY/MANAGEMENT INNOVATION CENTER • 2018-2019 • EHESS Paris – CEAFJP/Michelin Research Fellow • OECD Expert Advisory Group: Digital Science and Innovation Policy and Governance (DSIP) and STI Policy Monitoring and Analysis (REITER) project • 2019- • TDB Center for Advanced Empirical Research on Enterprise and Economy, Faculty of Economics, Hitotsubashi University
  2. 自己紹介(2) • 主な研究テーマ • 大規模データを活用したイノベーションプロセスの解析が現在の主な 研究テーマです。大学あるいは研究機関で生み出された基礎研究が、 特許あるいは論文などの著作物を媒介して企業の研究開発へと活用さ れ、それがどのような経済的・社会的価値を生み出すイノベーション へと結実するか、 •

    複数のデータソースを組み合わせることでその動態を解析しています。 特許、学術論文、財務データベースおよび、企業活動を包括的に記述 したデータベースを相互に結合することで、定量的な解析を行ってい ます。具体的なフィールドとしては、製薬・バイオ産業および再生医 療分野に関連した解析を行ってきました。また、無形資産が果たす役 割についても近年関心を持っています。
  3. Framework of Innovation Indicators [modified.] (Pakes and Griliches 1984) Other

    Economi c Factors Non-Knowledge Factors of Production Output: Productivity Firm’s Value Patent Patenting Propensity Inputs to Innovation R&D, designing, marketing research etc… Knowhow and First Mover Advantag Paper 3/8/2015 6
  4. Framework of Innovation Indicators [modified. 2] (Pakes and Griliches 1984)

    Other Economi c Factors Non-Knowledge Factors of Production Output: Productivity Firm’s Value Paten t Patenting Propensity Inputs to Innovation R&D, designing, marketing research etc… Knowhow and First Mover Advantag Paper In- tangible knowledg e 3/8/2015 7
  5. 研究手法のダイアグラム • 定性的なアプローチ • なにかしらの理論モデルにもとづき、文献調査や実地 調査、インタビューなどを使って証拠を集める。集 まった証拠にもとづきロジックを組み立てて、結果を 観察する • データソース

    • 誰かが書いた文章 (論文や特許や報告書や白書 etc…) • 誰かの頭のなか (をインタビューを使って収集する) • 定量的なアプローチ • なにかしらの理論モデルにもとづき、統計データベー スを使ってデータを集める。それを回帰分析 etc… な どの統計的な処理をして、結果を観察する • データソース • 統計データベースを使う • サーベイ調査をする • 政府統計を使う 結論 インプリケーショ ン (ex. 政策的な含意) 問い (リサーチクエスチョン) Literature Review (先行研究の調査) Hypothesis (問いに対する仮説の提示) 3/8/2015 8
  6. 「定量分析の業務フロー」 2019/7/9 9 リサーチクエス チョンを決める 必要なデータを 探す 論文データ/書誌 情報を使う 特許データ/書誌

    情報を使う その他データを使う (プレスリリース /POS データ) デ ー タ の ク リ ー ニ ン グ / 接 合 を 行 う エクセル/Python/Rでグラフを描く Stata/R/Python で回帰分析する KHCoder/R/Python でテキスト分析 する R/Netdraw etc… でネットワーク分 析する 企業データを 使う
  7. 研究手法(2) 1. ひとにきく 1. 発明したひと (=発明者) にきく 1. インタビューをする 2.

    サーベイ調査をする (アンケート をとる) 2. 発明に関与したひとにきく 1. インタビューをする 2. サーベイ調査をする (アンケート をとる) 2. 測ってみる 1. 特許ではかってみる 1. だれとだれが特許を書いたかで はかってみる 2. だれがだれの特許を引用してい るかではかってみる 2. 論文ではかってみる 1. だれとだれが論文を書いたかで はかってみる 2. だれとだれの論文を引用してい るかではかってみる 3. 特許と論文のつながりではかっ てみる 1. どの特許が、どの論文を引用し ているかで測ってみる 2. どの論文が、どの特許を引用し ているかで測ってみる 3/8/2015 10
  8. データベースを使った分析に必要な知識 • Excel で vlookup くらいを使ったことがある • (現在の)コンピュータは、「命令をしないと動かない」ことを知っ ている •

    コンピュータに対して命令を書くときは(多くの場合) 2byte 文字 ではなくて 1byte 文字で入力する必要があることを知っている • Select ではなく, select と打つ必要があることを知っている • マニュアルの通りコンピュータは動かないことを知っている • 「コレは簡単ですよー」と, 技術者がいう「簡単」と, 自らが認識す るところの「簡単」には相違があることを知っている • あきらめないこころ 3/8/2015 11
  9. Jupyter Notebook のインストール(1) • 1. https://anaconda.com にアクセスし, Python3.7 バージョン の

    [Download] をクリック Windows版 Mac版 ダウンロードが終わるまで待つ。
  10. 今日の notebook Google Colaboratory 版 https://colab.research.google.com/drive/1 qeYXrHXGE5yTxP5SVSvfxK9zmmXnyokD Jupyter Notebook 版

    https://www.dropbox.com/s/xj4uhfr6ycpt4 21/Empirical%20Analysis%20for%20Econo mics%20%232.ipynb?dl=0
  11. Exercise 1: 1+1 = 2 を計算する • Jupyter notebook の

    in: に, 1+1 をタイプする • 2 がout: に出力される
  12. Exercise 2: 3*9-12+14/3 を計算する • Jupyter notebook の in: に,

    3*9-12+14/3 をタイプする • 19.66666… がout: に出力される
  13. Exercise 3(1): sin(1)+cos(2)+tan(3) を計算する Exercise 3(2): 円周率を確認する • Math パッケージをインポートする

    • python の場合, データ処理 etc… を円滑を行うためにはパッケージを インポートします. • ここでは, 数学関数の含まれる math パッケージをインポートして, 続 いて三角関数を計算してみます • Sin(1)+cos(2)+tan(3)を計算する • ついでに, 円周率を確認する • Out に以下の通り出力されます
  14. Panda パッケージを利用してみる • pandas • Python でデータ解析を行うためのパッケージ • Excel の表やSQL

    を直接取り込んで処理するのにピッタリ • データ構造 • 一次元: Series • 二次元: DataFrame (※. 個人的にはよく使います) • 行タイトルや列タイトルがつけられる • 文字列と数字を excel みたいに混在出来る • インポートの方法 • import pandas as pd
  15. Exercise (6): Pandas パッケージで行列を DataFrame に変換する • Pandas パッケージをイン ポートする

    • import pandas as pd • 先程作成した行列c を DataFrame に変換する • Data “F”rame になってるよう にチェック • 出力する • 行番号と列番号が付いているこ とが確認できる
  16. Exercise (6-2): 行番号と列番号を名称変更する • Pandas パッケージをイン ポートする • import pandas

    as pd • 先程作成した行列c を DataFrame に変換する • Data “F”rame になってるよう にチェック • 出力する • 行番号と列番号が付いているこ とが確認できる
  17. Exercise (6-3): 行番号と列番号を名称変更する • 行番号を変更する • df1.columns で指定 • (データフレーム名).変更箇所

    • 列番号を変更する • df1.index で指定 • (データフレーム名).変更箇所 • 出力して確認
  18. 回帰分析 • 変数 X, Y のデータがあるとき, データからY をX で説明する回 帰方程式と呼ばれる式を求めること

    • Y; 被説明変数 • X; 説明変数 • X と Y それぞれの観測数を i とすると、 • = 0 + 1 + , = 1,2, … , と書ける. 0 と1 は未知パラメータ. は誤差項または撹乱項となる.
  19. 回帰分析 (cont.) • 回帰分析における仮定 • Xi は確率変数ではなく, 固定された値をとる • 誤差項は確率変数であり,

    期待値は0 となる. すなわち, E( ) = 0 • 誤差項 と は無相関となる. ( , ) = = 0 • 誤差項の分散は一定となる. ( ) = 2 = 2
  20. 回帰分析 (cont.) • 最小自乗推定量 • ෢ 1 = σ(− ത

    )(−ത ) σ(− ത )2 = σ(− ത ) σ(− ത )2 • ෢ 0 = ത - ෢ 1 ത • ത および ത はそれぞれ , の標本平均となる. • 前述の仮定において, 最小自乗推定量は最良線形不偏推定量を満たす. (ガウス・マルコフの定理) • 決定係数 • 誘導系 (reduced form) の回帰式の説明力を示す値 • R2 = σ(෢ − ത )2 σ(− ത )2 = 1 − σ 2 σ −ത 2 , ℎ = − ෢ 0 - ෢ 1
  21. 単回帰分析を廻してみる • Y=αX+β をベタに求めてみましょう • 決定係数や係数を求める • 使うデータ • 落合博満(ロッテ,

    中日, 巨人, 日本ハム) の打率(X)と年俸(Y) • データソース • https://nipponbaseball.web.fc2.com/personal/batter/ochiai_hiromitsu.html
  22. Exercise (8-2): 単回帰分析を回す • avg とsalary をそれぞれ, Numpy x, yに変換する

    • 回帰分析を lingregress で実施する • 回帰分析の結果を出力する (p値的に, 打率は年俸を説明できて いない可能性)
  23. Exercise (8-3): 単回帰分析を回す • x,y の散布図と回帰曲線を プロットして表示する • どうやら、打率は年俸を説 明出来ていない様子

    • Self Exercise • 打率ではない、別の変数 (Ops やホームラン数) を 引っ張ってきて, 同じように 単回帰を廻してみましょう
  24. Exercise (8-4); 単回帰を回す alternative バージョン • statsmodels.api モ ジュールを使う •

    add_constatnt によって 定数項を追加する • Excel やStata で解析し たのと似たような表が出 力される
  25. 重回帰分析 • 複数の説明変数が被説明変数に影響を与えると推定する • 複数の説明変数を, 1 , 2 , …

    , と表した場合 • = 0 + 1 1 + ⋯ + + , = 1,2, … , と表される. 0 … は未知パラメータとなる. また, は誤差項である. • 仮定 • 説明変数1 , 2 , … , は確率変数ではなく, 固定された値を取る • 誤差項は確率変数であり, 期待値は0 となる. すなわち, E( ) = 0 • 誤差項 と は無相関となる. ( , ) = = 0 • 誤差項の分散は一定となる. ( ) = 2 = 2 • 説明変数は他の変数の一次結合として表すことはできない. すなわち, 0 + 1 1 + ⋯ + = 0 となる 0 , 1 , … , は 0 = 1 = ⋯ = = 0以外に存在しない. このことを, 変数間に多重共線性がないという.
  26. 重回帰分析 (cont.) • それぞれ, 以下の通りベクトルおよび行列を仮定する. • = 1 2 …

    , = 1 ⋯ ⋮ ⋱ ⋮ 1 ⋯ , = 0 1 … , = 1 2 … • 行列表示で表すと, • = + • = 0 • ′ = 2
  27. 重回帰分析 (cont.) • 最小自乗推定量 • ෡ = (′)−′ • 決定係数

    • R2 = σ(෢ − ത )2 σ(− ത )2 = 1 − σ 2 σ −ത 2 , ℎ = − ෢ 0 - ෢ 1 • ところが, 重回帰分析の場合, 説明変数を増やすと誤差項 σ 2 が小さく なり, 結果, 決定係数が大きくなる可能性がある. そこで, 自由度修正済 み決定係数を用いる • 2 = 1 − σ 2/(−−1) σ −ത 2/(−1)
  28. 重回帰分析 (cont.) • 多重共線性 • 0 + 1 1 +

    ⋯ + = 0; = 1,2, … , が成立するとき, 説明変数間に多重共線性があるという. • 多重共線性がある場合, ≠ 0であれば, = − 0 + 1 1 + ⋯ + −1 −1 となり, すなわち, を他の説明変数で説明できる. • 対処方法; • VIF を用い, 多重共線性のチェックを行う
  29. 重回帰分析を行う • サンプルデータ • Scikit-learn の住宅価格データ • ボストンの506地区について, 犯罪率や固定資産税率, 教師あたりの生

    徒数などの属性値と, 住宅平均価格をテーブルに • 目的変数を target, 説明変数を boston に振り分ける
  30. 重回帰分析を行う CRIM 町ごとの人口一人あた りの犯罪率 AGE 1940年以前に建てられ た、所有者が住む建物 の割合 ZN 宅地の比率。25,000平

    方フィート以上のゾー ンで数えた値 DIS ボストンの5つの雇用中 心からの距離 INDUS 町ごとの非小売業の面 積比 RAD 放射状幹線道路からの 距離 CHAS チャールズ川に道がつ ながっているか TAX 固定資産税率 NOX NOx 濃度 PTRATIO 町ごとの教師あたりの 生徒数 RM 住宅あたり部屋数 B 町ごとの黒人比率 LSTAT 低階層人口の比率 MEDV 所有者が住む住宅の価 値の中央値
  31. Exercise(9) 重回帰分析を行う • データセットをsklearn から 取り込む • データを dset に放り込む

    • boston に説明変数を放り込 む • target に被説明変数を放り込 む • 結果をアウトプットする
  32. Exercise(10): VIF 値を確認する • 多重共線性のチェッ ク • statsmodels.stats.ou tliers_influence から

    variance_inflation_fa ctor を使って VIF(Variance Inflation Factor) を チェックする
  33. Extension; パネルデータ解析 • パネルデータ • N 個の主体(人,企業,団体,県,国など)の各々に関して T 期間に わたって観測された

    データ • パネルデータのメリット • (a) データ数が増えることにより,自由度が大きくなるので,推定精度 が向上する. • (b) 主体間の異質性をモデルに取り込むことは,単一の時系列,あるい はクロスセクションのみでは不可能であるが,それが可能になる. • (c) 主体間の異質性は,一般に観測不可能な主体固有の要因であり,そ のような要因以外の全体の関係を分析することが主目的ならば,固有 の要因を除去した分析が可能である. Source: https://www-cc.gakushuin.ac.jp/~20130021/ecmr/panel.pdf
  34. Extension; パネルデータ解析 • = + ′ + (i =1 ,···,N;

    t =1 ,···,T) • このとき, 誤差項 は以下の仮定を満たす. • = 0, = { 2 = かつ = のとき , 0(その他) • ; 未知の係数ベクトル • ′ ; 説明変数の p*1 確率ベクトル • 誤差項との独立性が仮定される (狭義外生性; strict exogeneity) • ; 主体 i に特有の個別効果 (individual effect) Source: https://www-cc.gakushuin.ac.jp/~20130021/ecmr/panel.pdf
  35. Extension; パネルデータ解析 • 固定効果モデル (Fixed Effect Model) • を定数のパラメータと仮定する •

    変動効果モデル (Random Effect Model) • を主体ごとに独立な確率変数と仮定し, • = 0, 2 = 2, = 0 を満たす。
  36. 今日の notebook (その2) Google Colaboratory 版 https://colab.research.google.com/drive/1 h7NY4ByUp5MkB1-eU__Lp8jAwTMLTFiT Jupyter Notebook

    版 https://www.dropbox.com/s/y3xiinmkp6w 6lbj/fifa19%20%E3%81%AE%E3%83%87%E 3%83%BC%E3%82%BF%E3%81%A7%E5%8 D%98%E5%9B%9E%E5%B8%B0%E3%81% A8%E9%87%8D%E5%9B%9E%E5%B8%B0 %E5%88%86%E6%9E%90%E3%82%92%E8 %A1%8C%E3%81%A3%E3%81%9F%E7%B5 %90%E6%9E%9C..ipynb?dl=0
  37. データセット (その1) • FIFA19 Datasets; クロスセクションデータ • https://www.kaggle.com/karangadiya/fifa19 FIFA 19

    に収録されている フットボールプレイヤー選手 の能力値や市場価値をまとめたデータ
  38. 分析について • どれを説明変数/被説明変数にするかはおまかせします • サラリー and/or 市場価値 and/or 能力? •

    ダミー変数の作成などもおまかせします • 必要あれば, 火曜日の講義で補足します
  39. Notebook の解説 やっていること ・Excel にしたデータをJupyter Notebook に取り込む (同じディレクトリにデータを 入れておくこと) ・シートの1枚目

    (0番目) を input_sheet_df にインポートする ・input_sheet_df.head(10) で, データの 10番目までを表示する Messi や Ronaldo, Suarez などのデータ が表示されていることが確認できる
  40. Notebook の解説 やっていること ・説明変数と被説明変数をそれぞれの列か ら取り出す (.iloc [行, 列]で, 行を指定せず 列のみを指定する)

    ・scipy.stats.lingress(説明変数, 被説明変 数) で単回帰を回す ・散布図および, 単回帰分析の結果をアウ トプットする
  41. Notebook の解説 sm.OLS(被説明変数, 定数項+説明変数) で回帰分析 を行い, 結果を表として出力する 被説明変数; overall (ゲーム上での総合評価)

    説明変数; age (年齢) 定数項および説明変数はそれぞれプラスに有意だが, R修正項は高くない。
  42. Notebook の解説 sm.OLS(被説明変数, 定数項+説明変数) で回帰分析 を行い, 結果を表として出力する 被説明変数; wage (年俸)

    説明変数; age (年齢) 定数項はマイナス, 説明変数はプラスに有意だが, R修正項はかなり高くない。
  43. Notebook の解説 • plt.scatter パッケージを用い, wage (年俸)とage(年齢) をプ ロットする •

    30歳までは年俸は上昇してい くが, その後下方トレンドが あることが確認できる • いくつか外れ値があることが 確認できる
  44. Notebook の解説 • Seaborn パッケージで, ヒス トグラムと散布図を同時にプ ロットする • 年齢はF分布,

    年俸はべき乗分 布に近いことが確認できる • 外れ値はメッシやクリスティ アーノロナウドなど.
  45. Notebook の解説 • 同様に, 重回帰分析を sm.OLS パッケージを用いて 行う • 説明変数が空の行を削除する

    (x_list.drop… 以下) • 年齢とレピュテーション, 契 約満期までの残り年数および 評価値はプラスに有意, 定数 項はマイナスに有意, 利き足 ダミーは有意であるとはいえ ないことが確認できる
  46. やってみよう • 被説明変数/説明変数を入れ替える • 異なるデータセットと接合する • 今までのケース in 一橋 •

    FIFA ランキングのデータを持ってきて, 国名をベースにデータセットに統合する • OECD の per capita GDP のデータを持ってきて, 国名をベースにデータセット に統合する • 面白い結果が出たら発表してみましょう
  47. 今までのおさらい • 無償で利用できるデータ • 特許 • IIP パテントデータベース • 論文

    • Microsoft Academics • J-global • 企業 • (Yahoo! ファイナンス) • 有償で利用できるデータ • 論文 • Web of Science • Scopus • 企業 • 帝国データバンク • 日経NEEDS
  48. とにかくデータベースは高い • Web of Science • n年分のデータで数千万円 • 帝国データバンク •

    一件データを取りに行くたびに数万円 • データを円滑に解析するためには, データそのものだけではなくそれ を解析できる環境も必要不可欠 • オンプレミスの環境を社内/学内に構築したりとか, AWS か Windows Azure か Google Big Query をサブスクライブしたりとか • データを解析するにはとっても手間もお金もかかる(外注ならなおさ ら)
  49. 今日のメインテーマ; オープンデータ • オープンデータとは • “特定のデータが、一切の著作権、特許などの制御メカニズムの制限な しで、全ての人が望むように利用・再掲載できるような形で入手でき るべきであるというアイデア” • “オープンデータとは、自由に使えて再利用もでき、かつ誰でも再配布

    できるようなデータのことだ。従うべき決まりは、せいぜい「作者の クレジットを残す」あるいは「同じ条件で配布する」程度である“ https://ja.wikipedia.org/wiki/%E3%82%AA%E3%83%BC%E3%83 %97%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF
  50. Level of Open Data ★ Available on the web (whatever

    format) but with an open licence, to be Open Data ★★ Available as machine-readable structured data (e.g. excel instead of image scan of a table) ★★★ as (2) plus non-proprietary format (e.g. CSV instead of excel) ★★★★ All the above plus, Use open standards from W3C (RDF and SPARQL) to identify things, so that people can point at your stuff ★★★★★ All the above, plus: Link your data to other people’s data to provide context https://www.w3.org/DesignIssues/LinkedData.html https://5stardata.info/ja/
  51. 統計データのRDF (Resource Description Framework) 化 • 統計表のデータ定義では、統計 表のセルごとにRDF化を行ない ます。 •

    統計表の各セルに対してIDを振 り、それを主語とします。 • 各セルに対して、次元、測度、 属性、観測値を、それぞれ述語、 目的語として定義します。 • 主語、述語、目的語の3つの要 素を「トリプル」といいますが、 ひとつの統計値(統計表のセ ル)は複数のトリプルによって 表されます。 http://data.e-stat.go.jp/lodw/outline/abstraction#1-1-1
  52. オープンデータの具体例; LINKED BRAZILIAN AMAZON RAINFOREST • Linked Brazilian Amazon Rainforest

    Data is such a dataset that is openly available for anyone to use for non-commercial research. The data was produced as a joint effort by the Institute for Geoinformatics, University of Muenster, Germany and the National Institute for Space Research (INPE) in Brazil. • The data can be accessed in a Linked Data fashion via a SPARQL-endpoint, and via dereferenciable URIs. The data consists of 8250 cells—each of size of 25 km * 25 km—capturing the observations of deforestation in the Brazilian Amazon Rainforest and a number of related and relevant variables. This spatiotemporal deforestation data was created using a number of aggregation methods from different sources. The data covers the whole Brazilian Amazon Rainforest. http://linkedscience.org/data/linked-brazilian-amazon-rainforest/
  53. オープンデータの具体例2; data.gov • Popular Baby Names • “Popular Baby Names

    by Sex and Ethnic Group Data were collected through civil birth registration. Each record represents the ranking of a baby name in the order of frequency. Data can be used to represent the popularity of a name. Caution should be used when assessing the rank of a baby name if the frequency count is close to 10; the ranking may vary year to year.” • https://catalog.data.gov/dataset/ most-popular-baby-names-by- sex-and-mothers-ethnic-group- new-york-city-8c742
  54. オープンデータの具体例3; 統計LOD • 日本の政府系機関が収集した データがLOD として公開され ている • http://data.e-stat.go.jp/lodw/ •

    消費者物価指数や経済センサス などが収録 • SPARQL Endpoint; http://data.e- stat.go.jp/lod/sparql/
  55. Dbpedia のデータモデル • リンクトデータの4原則 1. 事物の名前づけにURIを使う 2. HTTP URIを使うことでそれをWeb上で調べられるようにする 3.

    誰かがURIを引いたときには標準技術を使って有益な情報を提供する 4. 他のURIへのリンクを含むことで,人々がより多くの事物を発見でき るように支援する • “人や施設のような実世界の物や,色や単語,物の関係といっ た抽象的な概念についてもWeb上で扱えるようにする。”
  56. RESAS • https://resas.go.jp • 地域経済分析システム(2015年4月~) • ~Regional Economy Society Analyzing

    System~ • 地方創生のデータ利用の「入口」として、地域経済に関する官民の 様々 なデータを、地図やグラフ等で分かりやすく「見える化」してい るシステム • 各地域が、自らの強み・弱みや課題を分析し、その解決策を検討する ことを後押しするツール • Evidence Based Policy Making を目指した活動 引用; http://www.kantei.go.jp/jp/singi/sousei/resas/pdf/h31-01-07- newinfo.pdf
  57. RISIS • 欧州の大学コンソーシアムが運営する, イノベーションアクティビティに関する データの収集および解析プラットフォーム • RISIS2 Project like the

    RISIS CORE FACILITY (RCF), is organised around 3 major dimensions and activities: • 1. A front end, focusing on users, the ways they access RISIS, work within RISIS and build RISIS user communities. At the core is the RISIS Core facility (WP4). The core facility supports virtual transnational access (WP8) and is accompanied by all the efforts we do to raise awareness, train researchers and interact with them (WP2) and to help them build active user communities (mobilising D4Science VRE, WP7). • 2. A service layer that helps users organise problem based integration of RISIS datasets (with possibilities to complement with their own datasets) – this entails the data integration and analysis services (WP5) and methodological support for advanced quantitative methods (WP6). • 3. A data layer that gathers the core RISIS datasets that we maintain (WP5) and enlarge (WP9), the datasets of interest for which we insure reliability and harmonisation for integration (WP4), and the new datasets that we develop and will progressively open (WP10). https://www.risis2.eu/project-description/
  58. 今日の実習その1 (10分程度) • Python + Jupyternotebook で, DBPedia.org からデータを引っ 張ってこよう

    • 利用するもの • Jupyter Notebook + Python3 • DBPedia.org の SPARQL Endpoint
  59. 2. DBpedia.org から, 経済学に関連するカ テゴリ情報を取得する • インポートした SPARQLWrapper をインスタンスにする •

    そのとき, どの Endpoint からデータを読み出すか設定する (今回は http://dbpedia.org/ontology/) • どういったデータを取り出すかクエリを指定する (特許データベース回参照) • 今回は, 経済学 に関するカテゴリの情報を一括取得する • Query() メソッドでデータを取得し, convert() で読みやすい形に変換する
  60. 実習3; RESAS API からデータを取得する • https://opendata.resas- portal.go.jp/ • API経由でデータを取得する •

    右上の “RESAS-API 利用登 録・ログイン” からアカウン ト登録を行い, API キーを取 得する
  61. 実習3; RESAS をAPI で利用する • 都道府県のコード情報 を取り込む • データを読み込む先の URL

    情報を指定 • URL とともに, APIキー を指定する • データを取り込み, 中身 を確認する
  62. まとめ • Web スクレイピングしなくても, Wikipedia のデータはだいた い取得できる • RDF が使えると,

    無償でデータが活用できる • 多変量データの場合, ローカルPC環境にデータを置かなくても, RISIS などのプラットフォームを使えば解析ができる
  63. To whom it may concern… • 今日の内容は一橋大学講義「経済学のための実践的データ分 析」の一部を加筆修正したものです • 講義資料は以下にアップロードしているので,

    ご興味あれば御 覧ください • https://speakerdeck.com/yasushihara/ • https://www.slideshare.net/yasushihara • 似たような出張編を, 7/20に早稲田大学でも開催予定です.