Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
Search
winnie279
August 12, 2021
Science
0
380
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
バックプロパゲーションと勾配消失問題, 中村勇士, 2021
winnie279
August 12, 2021
Tweet
Share
More Decks by winnie279
See All by winnie279
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
56
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
63
5分で学ぶOpenAI APIハンズオン
yjn279
0
200
『確率思考の戦略論』
yjn279
0
130
Amazonまでのレコメンド入門
yjn279
1
160
もう一度理解するTransformer(後編)
yjn279
0
79
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
100
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
630
金研究室 勉強会 『Seismic Data Augmentation Based on Conditional Generative Adversarial Networks』
yjn279
0
95
Other Decks in Science
See All in Science
研究って何だっけ / What is Research?
ks91
PRO
1
110
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.7k
2025-06-11-ai_belgium
sofievl
1
140
データベース08: 実体関連モデルとは?
trycycle
PRO
0
920
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
370
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
100
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.3k
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
980
データベース10: 拡張実体関連モデル
trycycle
PRO
0
960
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
140
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
420
Explanatory material
yuki1986
0
380
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Designing Experiences People Love
moore
142
24k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Being A Developer After 40
akosma
90
590k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Measuring & Analyzing Core Web Vitals
bluesmoon
8
550
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
880
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Transcript
バックプロパゲーションと勾配 消失問題 金研 機械学習勉強会 2021/08/12 中村勇士
単純パーセプトロン x 1 x 2 x 3 x 4 x
5 y モデル化 w i :x i がどのくらい重要か(重み) 補正項 (バイアス) ニューロン ステップ関数 単純 パーセプトロン シグモイド関数
最適化 最初から最適な重み・バイアスは分からない → 重みの初期値はランダム 出力と正解がずれる(誤差) → トレーニングで重みの誤差を修正する
最適化 • 重みを変えると誤差は どうなるか? • グラフ ◦ 重み↓
誤差↓ ⇒ 重みを減らす ◦ 重み↑ 誤差↓ ⇒ 重みを増やす • 傾きを調べればよい
単純パーセプトロンのまとめ Forward Back 誤差を修正して重みを更新・最適化
ディープニューラルネットワーク モデル化
y 1 y 2 x 31 x 32 x 33
x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 y 1 y 2 x 31 x 32 x 33 x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 Forward propagation Forward propagation 最初の重みはランダム → 計算した出力と正解には誤差がある
x 31 x 32 x 33 x 34 y 1
y 2 x 31 x 32 x 33 x 34 x 21 x 22 x 23 x 24 x 21 x 22 x 23 x 24 x 11 x 12 x 13 x 11 x 12 x 13 y 1 y 2 Back propagation(誤差逆伝播法) Back propagation
y 1 y 2 x 31 x 32 x 33
x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 Forward propagation Back propagation ディープニューラルネットワークのまとめ
勾配消失問題 • 傾きがほぼ0になり学習が 進まなくなる → 学習は終了していない
• 層が多いほど発生しやすい • inputに近いほど発生しやすい
勾配消失問題 左の層ほど0.25以下の数をたくさんかける → 傾きが小さくなる シグモイド関数の 微分 シグモイド関数 Back
propagationの計算のため微分 → maxが0.25 (0.25)4 ≒ 0.004
勾配消失問題への対処 傾きがシグモイド関数より大きい x > 0で傾きが常に1 x ≤ 0に傾きをつけるなど
活性化関数の改善
• Batch Normalization ◦ 各バッチを正規化 (バッチ:グループ分けされたデータ) ◦ 平均0, 分散1にする
• メリット ◦ 学習率を上げられる → 勾配が小さくても学習できる ◦ 過学習を防ぐ → 従来の方法より高速 勾配消失問題への対処