$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
Search
winnie279
August 12, 2021
Science
0
460
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
バックプロパゲーションと勾配消失問題, 中村勇士, 2021
winnie279
August 12, 2021
Tweet
Share
More Decks by winnie279
See All by winnie279
NowWay:訪⽇外国⼈旅⾏者向けの災害⽀援サービス
yjn279
0
1
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
63
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
69
5分で学ぶOpenAI APIハンズオン
yjn279
0
210
『確率思考の戦略論』
yjn279
0
140
Amazonまでのレコメンド入門
yjn279
1
170
もう一度理解するTransformer(後編)
yjn279
0
82
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
110
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
790
Other Decks in Science
See All in Science
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
420
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
430
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
HDC tutorial
michielstock
0
240
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
140
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
研究って何だっけ / What is Research?
ks91
PRO
2
160
データマイニング - コミュニティ発見
trycycle
PRO
0
180
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
450
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
A Tale of Four Properties
chriscoyier
162
23k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Writing Fast Ruby
sferik
630
62k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
93
For a Future-Friendly Web
brad_frost
180
10k
What's in a price? How to price your products and services
michaelherold
246
12k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Transcript
バックプロパゲーションと勾配 消失問題 金研 機械学習勉強会 2021/08/12 中村勇士
単純パーセプトロン x 1 x 2 x 3 x 4 x
5 y モデル化 w i :x i がどのくらい重要か(重み) 補正項 (バイアス) ニューロン ステップ関数 単純 パーセプトロン シグモイド関数
最適化 最初から最適な重み・バイアスは分からない → 重みの初期値はランダム 出力と正解がずれる(誤差) → トレーニングで重みの誤差を修正する
最適化 • 重みを変えると誤差は どうなるか? • グラフ ◦ 重み↓
誤差↓ ⇒ 重みを減らす ◦ 重み↑ 誤差↓ ⇒ 重みを増やす • 傾きを調べればよい
単純パーセプトロンのまとめ Forward Back 誤差を修正して重みを更新・最適化
ディープニューラルネットワーク モデル化
y 1 y 2 x 31 x 32 x 33
x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 y 1 y 2 x 31 x 32 x 33 x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 Forward propagation Forward propagation 最初の重みはランダム → 計算した出力と正解には誤差がある
x 31 x 32 x 33 x 34 y 1
y 2 x 31 x 32 x 33 x 34 x 21 x 22 x 23 x 24 x 21 x 22 x 23 x 24 x 11 x 12 x 13 x 11 x 12 x 13 y 1 y 2 Back propagation(誤差逆伝播法) Back propagation
y 1 y 2 x 31 x 32 x 33
x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 Forward propagation Back propagation ディープニューラルネットワークのまとめ
勾配消失問題 • 傾きがほぼ0になり学習が 進まなくなる → 学習は終了していない
• 層が多いほど発生しやすい • inputに近いほど発生しやすい
勾配消失問題 左の層ほど0.25以下の数をたくさんかける → 傾きが小さくなる シグモイド関数の 微分 シグモイド関数 Back
propagationの計算のため微分 → maxが0.25 (0.25)4 ≒ 0.004
勾配消失問題への対処 傾きがシグモイド関数より大きい x > 0で傾きが常に1 x ≤ 0に傾きをつけるなど
活性化関数の改善
• Batch Normalization ◦ 各バッチを正規化 (バッチ:グループ分けされたデータ) ◦ 平均0, 分散1にする
• メリット ◦ 学習率を上げられる → 勾配が小さくても学習できる ◦ 過学習を防ぐ → 従来の方法より高速 勾配消失問題への対処