Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
Search
winnie279
August 12, 2021
Science
0
350
金研究室 勉強会 『バックプロパゲーションと勾配消失問題』
バックプロパゲーションと勾配消失問題, 中村勇士, 2021
winnie279
August 12, 2021
Tweet
Share
More Decks by winnie279
See All by winnie279
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
49
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
59
5分で学ぶOpenAI APIハンズオン
yjn279
0
190
『確率思考の戦略論』
yjn279
0
130
Amazonまでのレコメンド入門
yjn279
1
140
もう一度理解するTransformer(後編)
yjn279
0
72
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
99
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
540
金研究室 勉強会 『Seismic Data Augmentation Based on Conditional Generative Adversarial Networks』
yjn279
0
87
Other Decks in Science
See All in Science
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
130
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
190
CV_3_Keypoints
hachama
0
190
Hakonwa-Quaternion
hiranabe
1
100
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
130
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
390
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
120
SciPyDataJapan 2025
schwalbe10
0
240
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.5k
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
2
110
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
290
Ignite の1年間の軌跡
ktombow
0
130
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.4k
It's Worth the Effort
3n
184
28k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Navigating Team Friction
lara
187
15k
Building Adaptive Systems
keathley
43
2.6k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Being A Developer After 40
akosma
90
590k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
Transcript
バックプロパゲーションと勾配 消失問題 金研 機械学習勉強会 2021/08/12 中村勇士
単純パーセプトロン x 1 x 2 x 3 x 4 x
5 y モデル化 w i :x i がどのくらい重要か(重み) 補正項 (バイアス) ニューロン ステップ関数 単純 パーセプトロン シグモイド関数
最適化 最初から最適な重み・バイアスは分からない → 重みの初期値はランダム 出力と正解がずれる(誤差) → トレーニングで重みの誤差を修正する
最適化 • 重みを変えると誤差は どうなるか? • グラフ ◦ 重み↓
誤差↓ ⇒ 重みを減らす ◦ 重み↑ 誤差↓ ⇒ 重みを増やす • 傾きを調べればよい
単純パーセプトロンのまとめ Forward Back 誤差を修正して重みを更新・最適化
ディープニューラルネットワーク モデル化
y 1 y 2 x 31 x 32 x 33
x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 y 1 y 2 x 31 x 32 x 33 x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 Forward propagation Forward propagation 最初の重みはランダム → 計算した出力と正解には誤差がある
x 31 x 32 x 33 x 34 y 1
y 2 x 31 x 32 x 33 x 34 x 21 x 22 x 23 x 24 x 21 x 22 x 23 x 24 x 11 x 12 x 13 x 11 x 12 x 13 y 1 y 2 Back propagation(誤差逆伝播法) Back propagation
y 1 y 2 x 31 x 32 x 33
x 34 x 21 x 22 x 23 x 24 x 11 x 12 x 13 Forward propagation Back propagation ディープニューラルネットワークのまとめ
勾配消失問題 • 傾きがほぼ0になり学習が 進まなくなる → 学習は終了していない
• 層が多いほど発生しやすい • inputに近いほど発生しやすい
勾配消失問題 左の層ほど0.25以下の数をたくさんかける → 傾きが小さくなる シグモイド関数の 微分 シグモイド関数 Back
propagationの計算のため微分 → maxが0.25 (0.25)4 ≒ 0.004
勾配消失問題への対処 傾きがシグモイド関数より大きい x > 0で傾きが常に1 x ≤ 0に傾きをつけるなど
活性化関数の改善
• Batch Normalization ◦ 各バッチを正規化 (バッチ:グループ分けされたデータ) ◦ 平均0, 分散1にする
• メリット ◦ 学習率を上げられる → 勾配が小さくても学習できる ◦ 過学習を防ぐ → 従来の方法より高速 勾配消失問題への対処