Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ニーズ指向研究の活性化の観点からみたオープンサイエンスの可能性 / Possibility ...
Search
Kiyota Yoji, Ph.D.
June 19, 2018
Science
2
260
ニーズ指向研究の活性化の観点からみたオープンサイエンスの可能性 / Possibility of open science from the viewpoint of revitalizing needs-oriented research
Japan Open Science Summit (JOSS 2018)
June 19, 2018
at National Center of Science, Tokyo, Japan
Kiyota Yoji, Ph.D.
June 19, 2018
Tweet
Share
More Decks by Kiyota Yoji, Ph.D.
See All by Kiyota Yoji, Ph.D.
AIの視点からみた不動産のフロンティア / Frontiers of Real Estate from the Perspective of Artificial Intelligence
ykiyota
0
76
INFOSTA AI利活用研究会 (AISG-INFOSTA)のご紹介 / Introduction to AISG-INFOSTA
ykiyota
0
76
不動産情報サービスの研究開発における共有データ資源 / Shared data resources in research and development of real estate information services
ykiyota
0
340
JSAI 2023企画セッション「AI哲学マップ」企画の振り返り / JSAI 2023 Reflections on the AI Philosophy Map lecture series project
ykiyota
0
180
住まい探しの利便性向上にデータベース・情報アクセス技術が 果たした役割 / The Role of Database and Information Access Technology in Improving the Convenience of Housing Search
ykiyota
0
120
デジタル社会の行き着く先にライブラリアンが果たしうる役割を考える / Thinking about the role librarians can play in the destination of the digital society
ykiyota
0
1.9k
LIFULLアジェンダ -社会課題の発見と解決に向けた研究開発活動の紹介- / LIFULL Agenda -Research and development activities to discover and solve social issues-
ykiyota
0
310
JSAI 2022チュートリアル講演 AI哲学マップ / JSAI 2022 Tutorial "AI Philosophy Map"
ykiyota
1
850
不動産コンテンツ研究における異分野研究者との協働の取り組み / Collaborative efforts with researchers from different fields for real estate content studies
ykiyota
1
120
Other Decks in Science
See All in Science
ベイズ最適化をゼロから
brainpadpr
2
1.1k
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
3
690
Celebrate UTIG: Staff and Student Awards 2024
utig
0
590
白金鉱業Meetup Vol.15 DMLによる条件付処置効果の推定_sotaroIZUMI_20240919
brainpadpr
2
700
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
4
300
統計学入門講座 第1回スライド
techmathproject
0
240
大規模言語モデルの論理構造の把握能力と予測モデルの生成
fuyu_quant0
0
100
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.4k
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
180
Coqで選択公理を形式化してみた
soukouki
0
300
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
320
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
140
Featured
See All Featured
Designing for Performance
lara
605
68k
Code Reviewing Like a Champion
maltzj
521
39k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
11
1.3k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Rails Girls Zürich Keynote
gr2m
94
13k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
390
Code Review Best Practice
trishagee
67
18k
Faster Mobile Websites
deanohume
306
31k
Transcript
χʔζࢦݚڀͷ׆ੑԽͷ؍͔ΒΈͨ ΦʔϓϯαΠΤϯεͷՄೳੑ L I F UL L L a bɹओ੮ݚڀһ
ਗ਼ాɹཅ࢘ 2018.06.19 JOSS 2018 ηογϣϯB4 ʮຽؒاۀσʔλʹΑΔΦʔϓϯαΠΤϯεͷՄೳੑʯ Copyright© LIFULL All Rights Reserved.
ਗ਼ా ཅ࢘ LIFULL Lab ओ੮ݚڀһ Ԭݝੜ·Ε→େֶ(Ӄ)ˏژ→౦ژ ؔ৺: ࣗવݴޠॲཧԠ༻ → ݕࡧɾਪન
→ ใϦςϥγʔ (ਤॻؗ) → ੜ׆ྖҬ (ෆಈ࢈ɺհޢ etc.) ͰͷϝσΟΞٕज़׆༻ (ը૾ղੳؚΉ) ܦྺ: େֶڭһ → ݉ۀͰىۀ → ͦͪΒ͕ຊۀʹ → ങऩ ର֎త׆ಈ • ਓೳֶձ ฤूҕһձ ෭ҕһ (2018-) • ใॲཧֶձσʔλϕʔεγεςϜݚڀձ װࣄ (2017-) • WebDB Forum ࢈ֶ࿈ܞ୲װࣄ (2015-) • Code4Lib JAPANڞಉද (2011-) etc. 2
૯ܝࡌ݅No.1ͷ ෆಈ࢈ɾॅใαΠτ Β͠ʹີணͨ͠͞·͟·ͳ ใαʔϏε (Ҿӽ, อݥ, հޢ, ࢠҭͯ, etc.) ੈք50Χࠃ͚ʹల։͢Δ
ॅɾதݹंɾٻ৬ͳͲͷ ΞάϦήʔγϣϯαΠτ (本社: スペイン バルセロナ) LIFULLάϧʔϓͷαʔϏε܈
None
ग़య: Manyika, James et al. Digital America: A tale of
the haves and have-mores. McKinsey Global Institute. 2015 http://www.mckinsey.com/industries/high-tech/our-insights/digital-america-a-tale-of-the-haves-and-have-mores ෆಈ࢈ςοΫͷҐஔ͚ͮ ʢMcKinseyͷϨϙʔτʣ • ଞͷʮXςοΫʯͱൺֱ ͢ΔͱσδλϧԽͷ߹ ͍தؒతͳҐஔ͚ͮ • λʔήςΟϯάࠂͳͲɺ ͢Ͱʹߴʹσʔλ׆༻ • ҰํͰɺ٬ݟͳͲ ਓʹཔΔ෦͕େ͖͍ • ࠓޙͷσδλϧԽਁಁʹ ͱͳ͏มֵ͕ظ͞Ε Δ
Agenda • LIFULL HOME’SσʔληοτఏڙͷऔΓΈ • ຊͷݚڀίϛϡχςΟͷ՝ ʙγʔζࢦͱ χʔζࢦʙ • ຽؒاۀ͔ΒΈͨΦʔϓϯαΠΤϯε࣮ફͷ՝
ͱҙٛ • ͓ΘΓʹ 6
LIFULL HOME’Sσʔληοτ ఏڙͷऔΓΈ 7
ࠃͷିෆಈ࢈݅σʔλ 530ສ݅ • ॴࡏ (༣ศ൪߸ɺ࠷دΓӺͳͲ) • ྉɺ໘ੵɺஙɺ෦λΠϓ etc. • ݐߏ
(ɺమࠎɺమےίϯΫϦʔτ etc.) • ֤छͩ͜ΘΓ݅ (ϖοτՄɺָثɺΧ ϯλʔΩονϯɺόεɾτΠϨผ etc.) 物件画像 約8300万点 間取り図 約510万点 重厚な感じの エントランス 日当たりの 良いリビング • 2015年11月より提供開始 • 国内外の50を超える研究 組織への提供実績 LIFULL HOME’Sσʔληοτ 8
ෆಈ࢈݅ը૾ɾؒऔΓਤσʔλΛ ར༻ͨ͠ݚڀʹΑΔΠϊϕʔγϣϯग़ 9 不動産会社が⼊稿する画像の不整合検出 ユーザーに提供する 不動産情報品質の向上 間取り図からの3Dモデル⽣成 古川康隆准教授(Simon Fraser Univ.)による
LIFULL HOMEʼSデータセット利⽤研究 ICCV 2017に採択 VRコンテンツなどの 新たなUXの提供
σʔλαΠΤϯεΞϫʔυ2017 ϑΝΠφϦετબग़ 10
ਓೳֶձࢽ্Ͱͷ ಛूاըʮෆಈ࢈ͱAIʯ 20177݄߸ʹܝࡌɺهࣄ11ຊɾ61ϖʔδ 11
ෆಈ࢈ςοΫݚڀίϛϡχςΟ ͷग़ͱ׆ੑԽ ਓೳֶձશࠃେձOS ʮෆಈ࢈ͱAIʯ(2017, 2018) ICMR 2018ซઃࠃࡍϫʔΫγϣοϓ Multimedia for Real
Estate Tech (2018) 12
ຊͷݚڀίϛϡχςΟͷ՝ ʙγʔζࢦͱχʔζࢦʙ 13
ຊͷݚڀίϛϡχςΟͷ՝ • ࢈ֶؒͷ૬ޓཧղෆʁ • ϦεΫςΠΫͷෆʁ • γʔζࢦͷۃͳภΓʁ 14
ຊͷݚڀίϛϡχςΟͷ՝ • ࢈ֶؒͷ૬ޓཧղෆʁ • ϦεΫςΠΫͷෆʁ • γʔζࢦͷۃͳภΓʁ 15
ҏ౻و೭ઌੜˏ͓ͷਫঁࢠେ Visual Analyticsͱ͍͏ݚڀʹ͍ͭͯ ...ҰछͷχʔζࢦͰੜ·Εֶͨज़ίϛϡχςΟͱ ͍͑Δɻͱ͜Ζ͕ஶऀͷܦݧͱͯ͠ɺ͜ͷֶज़ ΛຊͰհ͢Δͱ͕טΈ߹Θͳ͍͜ͱ͕͋Δɻ ݚڀશମͷϑϨʔϜϫʔΫ࣮༻ࣄྫʹؔ৺Λ ࣋ͨͣɺػցֶशΠϯλϥΫγϣϯͳͲͷ֤ཁૉ ٕज़ͷཧత৽نੑ͚ͩΛࣥ፠ʹ࣭ͯ͘͠Δਓ͕ গͳ͔Βͣݟड͚ΒΕΔͷͰ͋Δɻʢதུʣཧ
ج൫ٕज़ͷ৽نੑ͔Βग़ൃͨ͠ϘτϜΞοϓతͳ γʔζࢦʹͩ͜Θͬͨڱ͍ํ๏͕ɺஶऀͷपғ ʹ͓͚Δຊͷֶज़քͰࠜڧ͗͢ΔͷͰɺͱ͍ ͏ײΛͨ͟ΔΛಘͳ͍ɻ ҏ౻و೭. 2015. ΠϊϕʔγϣϯͷͨΊͷ࢈ֶ࿈ܞͱجૅڭҭʹؔ͢ΔҰߟ. ಛूʮΠϊϕʔγϣϯͱAIݚڀʯ. ਓೳ, Vol. 30, No. 3, pp. 337-343. 16
χʔζࢦݚڀͷ׆ੑԽʹ ͚ͯ • ʮχʔζͷϑΥʔΧεͰ͔͠ൃݟ͞Εͳ͍ຊ࣭ తͳݚڀ՝ͨ͘͞Μ͋Δʯͱ͍͏ೝ͕ࣝί ϛϡχςΟશମͰڞ༗͞ΕΔ͜ͱ͕େ • େֶʹ͓͚Δجૅڭҭͷॏཁੑͷ࠶ೝࣝ • ઢܗɺ౷ܭֶɺΞϧΰϦζϜɺਓจࣾձՊֶɺetc.
ͷਂ͍ཧղ͕ɺχʔζࢦݚڀͷԼࢧ͑ͱͳΔ • ݚڀۀͱಉ༷ʹڭҭۀߴ͘ධՁ͞ΕΔʹʁ • ࢈ֶ࿈ܞͷதͷॆ࣮ • ͱ͘ʹɺ࢈ֶͷ૬ޓཧղΛਐΊΔࢪࡦʢਓࡐަྲྀɾΠ ϯλʔϯγοϓͳͲʣ 17
ຽؒاۀ͔ΒΈͨ ΦʔϓϯαΠΤϯε࣮ફͷ ՝ͱҙٛ 18
ຽؒاۀʹͱͬͯͷ ΦʔϓϯαΠΤϯε࣮ફͷ՝ • εςʔΫϗϧμʔ͔Βͷཧղ • ސ٬ɺܦӦਞɺΤϯυϢʔβʔɺࣾձɺetc. • EUҰൠσʔλอޢنଇʢGDPRʣͷࢪߦʹΑΓɺΤϯυ Ϣʔβʔ͔ΒͷཧղΑΓॏཁʹ •
σʔλఏڙͷίετ • ఏڙͷޮՌίετΛਖ਼Խ͠͏Δ͔ʁ • ϦεΫͷίϯτϩʔϧ • ͱ͘ʹɺڝ߹اۀΛར͢ΔϦεΫʹ৻ॏʹͳΔ 19
ͦΕͰຽؒاۀ͕ ΦʔϓϯαΠΤϯεΛ࣮ફ͢Δҙٛ • ಉҰͷݚڀ՝Λڞ༗͢ΔίϛϡχςΟͷܗ • େֶ͕ͦͷݚڀ՝Λબ͢Δಈػ͚ͮͱͳΔ • ʮاۀ͔Βͷݸผ૬ஊͷରԠ͏ݶք…ʯ • ڝ߹Ͳ͏͠Ͱ͋ͬͯڠྗͰ͖Δ෦ଟ͍
• ݚڀ։ൃඅͷ༗ޮ׆༻ʹͭͳ͕Δ • χʔζࢦݚڀΛ૿͍ͨ͠ͷͰ͋Εɺاۀଆ ͔ΒͷΑΓੵۃతͳಇ͖͔͚͕ඞཁ 20
͓ΘΓʹ 21
͓ΘΓʹ • ʮΦʔϓϯʯͱʮΫϩʔζυʯͷؒʹάϨʔ κʔϯ͕ଘࡏ • اۀʹͱͬͯͷσʔλఏڙͷऔΓΈʹεςʔΫϗ ϧμʔͷઆಘ͕ෆՄܽ • ݱ࣮తͳσʔλެ։Ϩϕϧͷઃఆ͕ඞཁ •
ʮΦʔϓϯʯͷՌ࣮ΛಘΔͨΊͷઓུ • ڭओٛʹؕΒͳ͍Α͏ʹ 22