Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ニーズ指向研究の活性化の観点からみたオープンサイエンスの可能性 / Possibility ...
Search
Kiyota Yoji, Ph.D.
June 19, 2018
Science
2
300
ニーズ指向研究の活性化の観点からみたオープンサイエンスの可能性 / Possibility of open science from the viewpoint of revitalizing needs-oriented research
Japan Open Science Summit (JOSS 2018)
June 19, 2018
at National Center of Science, Tokyo, Japan
Kiyota Yoji, Ph.D.
June 19, 2018
Tweet
Share
More Decks by Kiyota Yoji, Ph.D.
See All by Kiyota Yoji, Ph.D.
不動産データを対象としたビジネス応⽤事例 (IDRユーザフォーラム2025) / Business Applications of Real Estate Data: Case Studies (IDR User Forum 2025)
ykiyota
0
11
紙の答案の採点・集計・ 返却を少しでも楽にしたい! / How to Simplify Grading, Tallying, and Returning Paper Exams
ykiyota
0
36
LIFULL HOME'Sデータセットを活用した研究の傾向分析と今後の展望 / Trend Analysis and Future Prospects for Research Using the LIFULL HOME'S Dataset
ykiyota
0
61
AIの視点からみた不動産のフロンティア / Frontiers of Real Estate from the Perspective of Artificial Intelligence
ykiyota
0
150
INFOSTA AI利活用研究会 (AISG-INFOSTA)のご紹介 / Introduction to AISG-INFOSTA
ykiyota
0
150
不動産情報サービスの研究開発における共有データ資源 / Shared data resources in research and development of real estate information services
ykiyota
0
520
JSAI 2023企画セッション「AI哲学マップ」企画の振り返り / JSAI 2023 Reflections on the AI Philosophy Map lecture series project
ykiyota
1
210
住まい探しの利便性向上にデータベース・情報アクセス技術が 果たした役割 / The Role of Database and Information Access Technology in Improving the Convenience of Housing Search
ykiyota
0
140
デジタル社会の行き着く先にライブラリアンが果たしうる役割を考える / Thinking about the role librarians can play in the destination of the digital society
ykiyota
0
2.1k
Other Decks in Science
See All in Science
Algorithmic Aspects of Quiver Representations
tasusu
0
130
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
590
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
250
KH Coderチュートリアル(スライド版)
koichih
1
55k
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
(2025) Balade en cyclotomie
mansuy
0
320
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
400
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
140
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
データマイニング - コミュニティ発見
trycycle
PRO
0
190
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
400
Featured
See All Featured
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
580
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
69
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
78
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Transcript
χʔζࢦݚڀͷ׆ੑԽͷ؍͔ΒΈͨ ΦʔϓϯαΠΤϯεͷՄೳੑ L I F UL L L a bɹओ੮ݚڀһ
ਗ਼ాɹཅ࢘ 2018.06.19 JOSS 2018 ηογϣϯB4 ʮຽؒاۀσʔλʹΑΔΦʔϓϯαΠΤϯεͷՄೳੑʯ Copyright© LIFULL All Rights Reserved.
ਗ਼ా ཅ࢘ LIFULL Lab ओ੮ݚڀһ Ԭݝੜ·Ε→େֶ(Ӄ)ˏژ→౦ژ ؔ৺: ࣗવݴޠॲཧԠ༻ → ݕࡧɾਪન
→ ใϦςϥγʔ (ਤॻؗ) → ੜ׆ྖҬ (ෆಈ࢈ɺհޢ etc.) ͰͷϝσΟΞٕज़׆༻ (ը૾ղੳؚΉ) ܦྺ: େֶڭһ → ݉ۀͰىۀ → ͦͪΒ͕ຊۀʹ → ങऩ ର֎త׆ಈ • ਓೳֶձ ฤूҕһձ ෭ҕһ (2018-) • ใॲཧֶձσʔλϕʔεγεςϜݚڀձ װࣄ (2017-) • WebDB Forum ࢈ֶ࿈ܞ୲װࣄ (2015-) • Code4Lib JAPANڞಉද (2011-) etc. 2
૯ܝࡌ݅No.1ͷ ෆಈ࢈ɾॅใαΠτ Β͠ʹີணͨ͠͞·͟·ͳ ใαʔϏε (Ҿӽ, อݥ, հޢ, ࢠҭͯ, etc.) ੈք50Χࠃ͚ʹల։͢Δ
ॅɾதݹंɾٻ৬ͳͲͷ ΞάϦήʔγϣϯαΠτ (本社: スペイン バルセロナ) LIFULLάϧʔϓͷαʔϏε܈
None
ग़య: Manyika, James et al. Digital America: A tale of
the haves and have-mores. McKinsey Global Institute. 2015 http://www.mckinsey.com/industries/high-tech/our-insights/digital-america-a-tale-of-the-haves-and-have-mores ෆಈ࢈ςοΫͷҐஔ͚ͮ ʢMcKinseyͷϨϙʔτʣ • ଞͷʮXςοΫʯͱൺֱ ͢ΔͱσδλϧԽͷ߹ ͍தؒతͳҐஔ͚ͮ • λʔήςΟϯάࠂͳͲɺ ͢Ͱʹߴʹσʔλ׆༻ • ҰํͰɺ٬ݟͳͲ ਓʹཔΔ෦͕େ͖͍ • ࠓޙͷσδλϧԽਁಁʹ ͱͳ͏มֵ͕ظ͞Ε Δ
Agenda • LIFULL HOME’SσʔληοτఏڙͷऔΓΈ • ຊͷݚڀίϛϡχςΟͷ՝ ʙγʔζࢦͱ χʔζࢦʙ • ຽؒاۀ͔ΒΈͨΦʔϓϯαΠΤϯε࣮ફͷ՝
ͱҙٛ • ͓ΘΓʹ 6
LIFULL HOME’Sσʔληοτ ఏڙͷऔΓΈ 7
ࠃͷିෆಈ࢈݅σʔλ 530ສ݅ • ॴࡏ (༣ศ൪߸ɺ࠷دΓӺͳͲ) • ྉɺ໘ੵɺஙɺ෦λΠϓ etc. • ݐߏ
(ɺమࠎɺమےίϯΫϦʔτ etc.) • ֤छͩ͜ΘΓ݅ (ϖοτՄɺָثɺΧ ϯλʔΩονϯɺόεɾτΠϨผ etc.) 物件画像 約8300万点 間取り図 約510万点 重厚な感じの エントランス 日当たりの 良いリビング • 2015年11月より提供開始 • 国内外の50を超える研究 組織への提供実績 LIFULL HOME’Sσʔληοτ 8
ෆಈ࢈݅ը૾ɾؒऔΓਤσʔλΛ ར༻ͨ͠ݚڀʹΑΔΠϊϕʔγϣϯग़ 9 不動産会社が⼊稿する画像の不整合検出 ユーザーに提供する 不動産情報品質の向上 間取り図からの3Dモデル⽣成 古川康隆准教授(Simon Fraser Univ.)による
LIFULL HOMEʼSデータセット利⽤研究 ICCV 2017に採択 VRコンテンツなどの 新たなUXの提供
σʔλαΠΤϯεΞϫʔυ2017 ϑΝΠφϦετબग़ 10
ਓೳֶձࢽ্Ͱͷ ಛूاըʮෆಈ࢈ͱAIʯ 20177݄߸ʹܝࡌɺهࣄ11ຊɾ61ϖʔδ 11
ෆಈ࢈ςοΫݚڀίϛϡχςΟ ͷग़ͱ׆ੑԽ ਓೳֶձશࠃେձOS ʮෆಈ࢈ͱAIʯ(2017, 2018) ICMR 2018ซઃࠃࡍϫʔΫγϣοϓ Multimedia for Real
Estate Tech (2018) 12
ຊͷݚڀίϛϡχςΟͷ՝ ʙγʔζࢦͱχʔζࢦʙ 13
ຊͷݚڀίϛϡχςΟͷ՝ • ࢈ֶؒͷ૬ޓཧղෆʁ • ϦεΫςΠΫͷෆʁ • γʔζࢦͷۃͳภΓʁ 14
ຊͷݚڀίϛϡχςΟͷ՝ • ࢈ֶؒͷ૬ޓཧղෆʁ • ϦεΫςΠΫͷෆʁ • γʔζࢦͷۃͳภΓʁ 15
ҏ౻و೭ઌੜˏ͓ͷਫঁࢠେ Visual Analyticsͱ͍͏ݚڀʹ͍ͭͯ ...ҰछͷχʔζࢦͰੜ·Εֶͨज़ίϛϡχςΟͱ ͍͑Δɻͱ͜Ζ͕ஶऀͷܦݧͱͯ͠ɺ͜ͷֶज़ ΛຊͰհ͢Δͱ͕טΈ߹Θͳ͍͜ͱ͕͋Δɻ ݚڀશମͷϑϨʔϜϫʔΫ࣮༻ࣄྫʹؔ৺Λ ࣋ͨͣɺػցֶशΠϯλϥΫγϣϯͳͲͷ֤ཁૉ ٕज़ͷཧత৽نੑ͚ͩΛࣥ፠ʹ࣭ͯ͘͠Δਓ͕ গͳ͔Βͣݟड͚ΒΕΔͷͰ͋Δɻʢதུʣཧ
ج൫ٕज़ͷ৽نੑ͔Βग़ൃͨ͠ϘτϜΞοϓతͳ γʔζࢦʹͩ͜Θͬͨڱ͍ํ๏͕ɺஶऀͷपғ ʹ͓͚Δຊͷֶज़քͰࠜڧ͗͢ΔͷͰɺͱ͍ ͏ײΛͨ͟ΔΛಘͳ͍ɻ ҏ౻و೭. 2015. ΠϊϕʔγϣϯͷͨΊͷ࢈ֶ࿈ܞͱجૅڭҭʹؔ͢ΔҰߟ. ಛूʮΠϊϕʔγϣϯͱAIݚڀʯ. ਓೳ, Vol. 30, No. 3, pp. 337-343. 16
χʔζࢦݚڀͷ׆ੑԽʹ ͚ͯ • ʮχʔζͷϑΥʔΧεͰ͔͠ൃݟ͞Εͳ͍ຊ࣭ తͳݚڀ՝ͨ͘͞Μ͋Δʯͱ͍͏ೝ͕ࣝί ϛϡχςΟશମͰڞ༗͞ΕΔ͜ͱ͕େ • େֶʹ͓͚Δجૅڭҭͷॏཁੑͷ࠶ೝࣝ • ઢܗɺ౷ܭֶɺΞϧΰϦζϜɺਓจࣾձՊֶɺetc.
ͷਂ͍ཧղ͕ɺχʔζࢦݚڀͷԼࢧ͑ͱͳΔ • ݚڀۀͱಉ༷ʹڭҭۀߴ͘ධՁ͞ΕΔʹʁ • ࢈ֶ࿈ܞͷதͷॆ࣮ • ͱ͘ʹɺ࢈ֶͷ૬ޓཧղΛਐΊΔࢪࡦʢਓࡐަྲྀɾΠ ϯλʔϯγοϓͳͲʣ 17
ຽؒاۀ͔ΒΈͨ ΦʔϓϯαΠΤϯε࣮ફͷ ՝ͱҙٛ 18
ຽؒاۀʹͱͬͯͷ ΦʔϓϯαΠΤϯε࣮ફͷ՝ • εςʔΫϗϧμʔ͔Βͷཧղ • ސ٬ɺܦӦਞɺΤϯυϢʔβʔɺࣾձɺetc. • EUҰൠσʔλอޢنଇʢGDPRʣͷࢪߦʹΑΓɺΤϯυ Ϣʔβʔ͔ΒͷཧղΑΓॏཁʹ •
σʔλఏڙͷίετ • ఏڙͷޮՌίετΛਖ਼Խ͠͏Δ͔ʁ • ϦεΫͷίϯτϩʔϧ • ͱ͘ʹɺڝ߹اۀΛར͢ΔϦεΫʹ৻ॏʹͳΔ 19
ͦΕͰຽؒاۀ͕ ΦʔϓϯαΠΤϯεΛ࣮ફ͢Δҙٛ • ಉҰͷݚڀ՝Λڞ༗͢ΔίϛϡχςΟͷܗ • େֶ͕ͦͷݚڀ՝Λબ͢Δಈػ͚ͮͱͳΔ • ʮاۀ͔Βͷݸผ૬ஊͷରԠ͏ݶք…ʯ • ڝ߹Ͳ͏͠Ͱ͋ͬͯڠྗͰ͖Δ෦ଟ͍
• ݚڀ։ൃඅͷ༗ޮ׆༻ʹͭͳ͕Δ • χʔζࢦݚڀΛ૿͍ͨ͠ͷͰ͋Εɺاۀଆ ͔ΒͷΑΓੵۃతͳಇ͖͔͚͕ඞཁ 20
͓ΘΓʹ 21
͓ΘΓʹ • ʮΦʔϓϯʯͱʮΫϩʔζυʯͷؒʹάϨʔ κʔϯ͕ଘࡏ • اۀʹͱͬͯͷσʔλఏڙͷऔΓΈʹεςʔΫϗ ϧμʔͷઆಘ͕ෆՄܽ • ݱ࣮తͳσʔλެ։Ϩϕϧͷઃఆ͕ඞཁ •
ʮΦʔϓϯʯͷՌ࣮ΛಘΔͨΊͷઓུ • ڭओٛʹؕΒͳ͍Α͏ʹ 22