Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSでLLMアプリをつくろう / LLM App on AWS
Search
吉田真吾
July 25, 2023
Technology
0
720
AWSでLLMアプリをつくろう / LLM App on AWS
2023.7.24 JAWS-UG東京で話した資料です。
吉田真吾
July 25, 2023
Tweet
Share
More Decks by 吉田真吾
See All by 吉田真吾
Serverless Meetup #21
yoshidashingo
1
130
リモートMCPサーバーが便利な話
yoshidashingo
1
80
20250728 MCP, A2A and Multi-Agents in the future
yoshidashingo
1
240
20250619 AIコーディング道場 成果発表会
yoshidashingo
0
6
AIコーディング道場成果発表【予告】
yoshidashingo
0
6
20250426 LT
yoshidashingo
0
5
Difyで作る生成AIアプリ完全入門解説
yoshidashingo
1
17
AIエージェント時代のエンジニアになろう #jawsug #jawsdays2025 / 20250301 Agentic AI Engineering
yoshidashingo
10
6.9k
あなたが人生で成功するための5つの普遍的法則 #jawsug #jawsdays2025 / 20250301 HEROZ
yoshidashingo
2
2.2k
Other Decks in Technology
See All in Technology
Autonomous Database Serverless 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
18
52k
Amazon Qで2Dゲームを作成してみた
siromi
0
170
AIは変更差分からユニットテスト_結合テスト_システムテストでテストすべきことが出せるのか?
mineo_matsuya
5
2.5k
歴代のWeb Speed Hackathonの出題から考えるデグレしないパフォーマンス改善
shuta13
6
520
ウォンテッドリーのアラート設計と Datadog 移行での知見
donkomura
0
150
意志の力が9割。アニメから学ぶAI時代のこれから。
endohizumi
1
110
サイボウズフロントエンドの横断活動から考える AI時代にできること
mugi_uno
3
1.1k
AWSの最新サービスでAIエージェント構築に楽しく入門しよう
minorun365
PRO
8
480
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
780
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
150
事業特性から逆算したインフラ設計
upsider_tech
0
240
AIが住民向けコンシェルジュに?Amazon Connectと生成AIで実現する自治体AIエージェント!
yuyeah
0
210
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
GitHub's CSS Performance
jonrohan
1031
460k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Why Our Code Smells
bkeepers
PRO
338
57k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Done Done
chrislema
185
16k
Speed Design
sergeychernyshev
32
1.1k
A Tale of Four Properties
chriscoyier
160
23k
The Cult of Friendly URLs
andyhume
79
6.5k
Embracing the Ebb and Flow
colly
86
4.8k
Building Adaptive Systems
keathley
43
2.7k
Transcript
"84Ͱ࣮ݱ͢Δ --.ϫʔΫϑϩʔ Ծ JAWS-UG / !ZPTIJEBTIJOHP
吉田真吾 AWS Serverless Hero n p Oracle SA p 113
/ pAWS n ( ) CTO p SaaS ( ) pAWS DevOps n pAWS (2012 ) pAWS Samurai 2014 / 2016 pAWS Serverless Hero AWS AWS Lambda Amazon S3 BRAv6
IUUQTUPLZPTFSWFSMFTTEBZTJP ˣ l(FU5JDLFUTz ˣ 𝕏 l4FSWFSMFTT%BZT 5PLZPʹࢀՃΛਃ͠ࠐΈ·ͨ͠ʂz
None
3"( ݕࡧ֦ுੜ ΞϓϦ ʮ$:%"41&01-&ʯʹɺࣾһ͔Βͷ͍߹ΘͤʹࣗಈͰ͑Δ$IBU(15ػೳʮ$:%"41&01-&$PQJMPU$IBUʯ https://www.cydas.co.jp/news/press/202304_people-gpt/
None
ੈେ--.࣌ "*ͷຽओԽ ΞϓϦ։ൃऀ͕--.ΞϓϦΛϢʔβʔʹಧ͚͍࣌͢ ͬͱখ͍͠Μ͔ͱࢥͬͯͨΑ
λεΫ ❌ ˠ ۀ ⭕ ϫʔΫϑϩʔ ෳͷλεΫΛϓϩάϥϛϯάʹΑΔ੍ޚͱɺ--.ʹΑΔ੍ޚΛͭͳ͍Ͱ ࣮ݱ͢Δ
ֶΜͩ͜ͱ 3"(࣮͍͢͠ˠ<69؍>ैདྷͷݕࡧ6* --.Tͳ͠ ͰղܾͰ͖Δʁ ຒΊࠐΈදݱ &NCFEEJOHT औಘͯ͠ϕΫλʔྨࣅݕࡧ͢ΔΑΓɺΤϯλʔϓ ϥΠζݕࡧͷ΄͏͕͍͍ͨͯɺͯ͢ʹ͓͍ͯྑ͍
--.ͷೳྗΛ׆͔͢ϫʔΫϑϩʔ͕ॏཁ ग़ྗ͕֬ఆతͳϓϩάϥϛϯάͱɺඇ֬ఆతͳ--.ͷΈ߹Θͤ ෳͷλεΫΛνΣΠϯ͍ͯ͘͠🦜🔗 🦜🔗ΞΠσΞʴ࣮ͷๅݿ 3F"DU ˠ MBOHDIBJOBHFOUT )Z%& ˠ ࣭ͷ͑Λ--.͕ໝͯ͠ɺͦͷ͑ʹྨࣅͨࣝ͠ΛݕࡧGSPN MBOHDIBJODIBJOT JNQPSU)ZQPUIFUJDBM%PDVNFOU&NCFEEFS --.0QT㱠.-0QT ೖྗͷมԽ ग़ྗͷมԽʹؾ͖ͮͮΒ͍ ؾ͍ͮͨͱͯͰ͖Δ͜ͱ͕ݶΒΕΔ "1*Ϟσϧͷࠩ͠ସ͑ɺϓϩϯϓτͷௐ ʴ όʔδϣϯཧ ϨεϙϯελΠϜͳͲऔಘ͓͖ͯͩ͘͠Ζ͏ FY -BOH4NJUI
"NB[PO,FOESB 🦜🔗 ⾼精度な⽣成系 AI アプリケーションを Amazon Kendra、LangChain、⼤規模⾔語モデルを使って作る https://aws.amazon.com/jp/blogs/news/quickly-build-high-accuracy-generative-ai-applications-on-enterprise- data-using-amazon-kendra-langchain-and-large-language-models/
🦜🔗 ֶͿͳΒ 6EFNZ -BOH$IBJOʹΑΔେنݴޠϞσϧʢ--.ʣΞϓϦ έʔγϣϯ։ൃೖʕ(15ΛͬͨνϟοτϘοτͷ࣮·Ͱ https://www.udemy.com/course/langchain-apps/
🦜🔗 ֶͿͳΒ ͘͘-BOH$IBJO https://langchain-jp.connpass.com/event/289590/
ηΩϡϦςΟͱϓϥΠόγʔ ຊ൪ڥར༻ʹ͚ͯ
"84ͷΫϥυηΩϡϦςΟσʔλอޢ • ࣄ࣮ • "84ηΩϡϦςΟʹലେͳࢿɿෳͷαʔϏεɺෳͷίϯϓϥ ΠΞϯε४ڌ • ΫϥυΛΫϥυͨΒ͠ΊͯΔͷ "*ʹΑΔίϯτϩʔϧ •
༧ଌ • <>ηΩϡϦςΟ৫ͷ͋ΒΏΔ׆ಈʹෆՄܽʹͳΔ • <>"*ػցֶशͰଅਐ͞ΕͨΦʔτϝʔγϣϯ͕ηΩϡϦςΟΛڧ Խ͢Δ • "NB[PO(VBSE%VUZɺ"NB[PO%FUFDUJWFɺ"NB[PO$PEF(VSVɺ"NB[PO .BDJFʜ • <>σʔλอޢͷΑΓେ͖ͳࢿ͕ਐΉ • (%13ಉ༷ͷن੍ͷੈք֤ࠃͷ͕Γɾ࣮ӡ༻ͷڧԽ CJ Moses による 2023 年以降の セキュリティに 関する予測 https://d1.awsstatic.com/Security/Security_Predictions_e-book_2022_JP .pdf
08"415PQ--.ΞϓϦ<ESBGU> ϓϩϯϓτΠϯδΣΫγϣϯ • --.͕ҙਤ͠ͳ͍ಈ࡞ΛҾ͖ى͜͢ϓϩϯϓτͷ ্ॻ͖ ҆શͰͳ͍ग़ྗॲཧ • όοΫΤϯυγεςϜͷใ͕ग़ྗ͞ΕΔ͜ͱʹ
ΑΔѱ༻ τϨʔχϯάσʔλͷԚછ • ηΩϡϦςΟɺ༗ޮੑɺྙཧత;Δ·͍ͷӨڹ Ϟσϧͷ%P4 • େྔͷτʔΫϯফඅɺϨεϙϯεѱԽɺίετߴ ಅ αϓϥΠνΣʔϯͷ੬ऑੑ • ϓϥάΠϯSEύʔςΟͷίϯϙʔωϯτ͔Β ͷ৵ ػີσʔλͷ࿙Ӯ • ԠͰػີσʔλΛ࿙Ӯ͢ΔՄೳੑˠෆਖ਼ΞΫηεɺ ϓϥΠόγʔ৵ɺηΩϡϦςΟ৵ ҆શͰͳ͍ϓϥάΠϯઃܭ ˞ͱྨࣅ • ϓϥάΠϯ͔Β҆શͰͳ͍ೖྗʹΑΓ੬ऑੑ͕ѱ༻ ͞ΕΔ ΤʔδΣϯτͷ • ࣗతͳΤʔδΣϯτ͕ҙਤ͠ͳ͍݁ՌΛͨΒ͢ ΞΫγϣϯΛ࣮ߦ͢ΔՄೳੑ աͳґଘ • ෆਖ਼֬ɾෆదͳੜίϯςϯπʹґଘͯ͠σϚɺ ๏తɺηΩϡϦςΟ੬ऑੑʹ໘͢Δ Ϟσϧట • ಠࣗϞσϧͷෆਖ਼ΞΫηεɺྲྀग़ˠܦࡁଛࣦɺڝ ૪༏ҐੑԼ ˞ৠཹϑΝΠϯνϡʔχϯάάϨʔ͔ OWASP Top 10 for Large Language Model Applications https://owasp.org/www-project-top-10-for-large-language-model-applications/
ݸਓσʔλอޢ๏੍ɿνΣοΫ͖͢ • ԿΛอޢ͢Δͷ͔ˠʮݸਓͷݖརརӹʯ • ݸਓσʔλอޢͷʮܾఆࢦʯརӹϞσϧ • ࣗݾใίϯτϩʔϧݖͰͳ͘ɺใతଞ͔Βͷࣗ༝ • ΘΕΘΕʹԿ͕ٻΊΒΕ͏Δͷ͔ •
ࣗݾใίϯτϩʔϧݖࡒ࢈ݖతϞσϧͷຊਓಉҙݪଇ ΦϓτΠϯΦϓτΞτ ˠͳʹ͕ ݸਓใͰͳʹ͕ݸਓใͰͳ͍ͱ͍͏ٞʹͳΔ • ใతଞݸਓσʔλॲཧʹجͮ͘ଞऀʹΑΔධՁɾܾఆ͕ຊਓͷࣗݾܾఆΛ્͠͏Δ͜ ͱˠ͔Βͷࣗ༝ ޚͰ͖Δ͜ͱ • ͨͱ͑ • ݹ͍ଐੑใɺ͍͋·͍ͳଐੑใͰ৬ͰͷධՁ͕ܾΊΒΕͨ ˞ͦͦ0&$%ݪଇ σʔλ࣭ͷݪଇ ʹ͍ͯ͠Δ͕ɻ • ؔ࿈ੑͷͳ͍ใͰෆརͳΫϨδοτείΞ͕ܾఆ͞Εͨ ˠ ͜ΕΒΛγεςϜͰϞχλϦϯά͢Δෆஅͷྗ͕ٻΊΒΕ͏Δ • ཧతجૅ͔Β๏ମܥͷཧ • ౷੍͞Εͨඇબผར༻ˠҩྍԾ໊Ճใɿ౷ܭྔʹूܭͨ͠σʔλɺ·ͨೋ࣍ར༻ • ݸਓσʔλॲཧத৺ͷنˠॲཧରͱ͠ͳ͍σʔλͷϚεΩϯάɺΦϓτΠϯॲཧͷෛ୲ • ධՁɾܾఆͷదੑ֬อˠબผΞϧΰϦζϜ దੑͰબผͨ͠ڭҭϓϩάϥϜɺ0,ʁ 【提⾔書公表】デジタル社会を駆動する『個⼈データ保護法制』に向けて(GLOCOM六本⽊会議) https://www.glocom.ac.jp/news/news/8540
🦜🔗 &YQFSJNFOUBMύοέʔδׂ • Ϗοάχϡʔε • $7& ੬ऑੑ ΛؚΉػೳΛͯ͢ผύοέʔδ &YQFSJNFOUBM ʹ
• 🦜🔗ίΞͷεϦϜԽ • $PNNVOJUZνΣΠϯͱ͍͏ύοέʔδͷܭըʹݴٴ • ҙຯ͢Δ͜ͱ • ຊ൪Ͱ͑ͳ͍ ˠ ͍͏Δ • ͜ͷऑɺແ੍ݶʹ֦ு͞ΕΔҰํͩͬͨͷͰ-BNCEB-BZFSʹ͍ ͔ͭΒͳ͘ͳΔ ˠ Ұఆͷަ௨ཧ͕͞ΕΔΑ͏ʹͳΔ • จͷ࣮৺తͳΞΠσΞͷ࣮͕ΑΓ13ग़͘͢͠ͳΔ • "84-BNCEBͰͷར༻ • ݱࡏͷαΠζɿґଘϥΠϒϥϦؚΊͨల։ޙαΠζͰ.#ఔ • εϐϯΞοϓʹ͓͓ΉͶඵఔ͔͔Δˠ4MBDL͔Β͏߹ -B[ZϦεφʔϦτϥΠϔομͷνΣοΫͳͲෳͷରࡦ͕ඞཁ
IUUQTUPLZPTFSWFSMFTTEBZTJP ˣ l(FU5JDLFUTz ˣ 𝕏 l4FSWFSMFTT%BZT 5PLZPʹࢀՃΛਃ͠ࠐΈ·ͨ͠ʂz
%":4্࢙࠷ߴͷϥΠϯφοϓ • ߽՚ηογϣϯ • Ωʔϊʔτɿ"84 • αʔόʔϨεͷख़ •
αʔόʔαΠυओମ͔ΒΤοδϑϩϯτͷ։ൃϥΠϑαΠΫϧ ͷมԽ • ੜ"*ͱαʔόʔϨε • ߽՚εϙϯαʔ • "84 • .PNFOUP • 1JOH$"1 5J%# • .JDSPTPGU • ,%%*ΞδϟΠϧ։ൃηϯλʔ • 4FSWFSMFTT0QFSBUJPOT