Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Incorporating Copying Mechanism in Sequence-to-...
Search
youichiro
October 08, 2018
Technology
0
160
Incorporating Copying Mechanism in Sequence-to-Sequence Learning
長岡技術科学大学
自然言語処理研究室
文献紹介(2018-10-09)
youichiro
October 08, 2018
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.6k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
120
Multi-Agent Dual Learning
youichiro
1
190
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
140
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
160
勉強勉強会
youichiro
0
97
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
210
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
190
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
220
Other Decks in Technology
See All in Technology
配列に見る bash と zsh の違い
kazzpapa3
3
160
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.6k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
1k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
260
Cosmos World Foundation Model Platform for Physical AI
takmin
0
960
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
150
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
220
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
210
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
160
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
130
Featured
See All Featured
The Limits of Empathy - UXLibs8
cassininazir
1
220
How GitHub (no longer) Works
holman
316
140k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Why Our Code Smells
bkeepers
PRO
340
58k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
150
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
Transcript
Incorporating Copying Mechanism in Sequence-to-Sequence Learning Jiatao Gu, Zhengdong Lu,
Hang Li, Victor O.K. Li Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1631–1640, 2016. ⽂献紹介(2018-10-08) ⻑岡技術科学⼤学 ⾃然⾔語処理研究室 ⼩川 耀⼀朗 1
Incorporating Copying Mechanism in Sequence-to-Sequence Learning l Sequence-to-Sequenceモデルに copy mechanism
を 組み込んだ CopyNet を提案 u ⼊⼒⽂中の重要なセグメント(単語列)をコピーする現象を扱いたい u 単語を⽣成する確率と⼊⼒単語をコピーする確率を組み合わせて出⼒ する 2
Introduction Copy mechanism: ü ⼊⼒⽂中の重要なセグメント(単語列)をコピーする現象を扱いたい ü OOVも出⼒できる 3 Copy! Copy!
⼈名 セリフ
Attention Mechanism DecodeするときにEncoder のどの隠れ層ベクトルに着 ⽬するべきかを学習 4 " = $ "&
ℎ& ( &)* Decoder Encoder Attention RNNSearch
CopyNet -overview- l RNNSearchに copy mechanism を組み込む 5
CopyNet -overview- 6 RNNSearchと同じ 導⼊部分 1 2
CopyNet -Prediction- 7 Copy-Mode Generate-Mode Encoderの 隠れ層ベクトル が⼊⼒⽂中(M)に存在しなければCopy-Modeは0 1 Decoderの出⼒
= (vocabulary内の単語が出⼒される確率) +(⼊⼒⽂中の単語がコピーされる確率)
CopyNet -State Update- 8 2 Encoderの 隠れ層ベクトル
CopyNet -State Update- 9 / "/* " RNNSearch CopyNet /
"/* " / / + "/* : "/* の • "/* が⼊⼒⽂にあれば, 対応するEncoderの隠れ 層ベクトルを返す • 無ければ0 前回の出⼒−1 に対応するEncoderの隠れ層ベクトルを加えて DecoderのStateを更新 (−1 を使って Stateを更新 )
Experiment -Synthetic Dataset- 10 系列のコピーを含む, ⼈⼯的な系列変換データを作成 l 1000種類の数値と変数x, yを組み合わせた系列を作る l
5種類の系列変換ルールに則る(下図) l 変数x, yに1~15個の数値を代⼊して多数の⼈⼯データを作成 l Training: 20,000 instances Test: 20,000 instances
Experiment -Synthetic Dataset- 11 結果
Experiment -Summarization- 12 l LCSTSデータセットで要約 l Weibo(中国のSNS)の投稿から収集したshort news(80⽂ 字未満)とその要約(10-30⽂字)の対 l
Training: 2.4M sent. Test: 725 sent. 結果
Experiment -Summarization- 13 • ⼊⼒⽂中の連続した単語もコピーできている • OOVを含む要約も⽣成できている
Experiment -Dialogue- 14 l Baidu Tieba(中国の掲⽰板)から会話を収集 l 収集した会話から1問1答の会話を173パターン抽出 l Synthetic
datasetと同様に、変数に適切なsub- sequence(⼈名, ⽇付等)を代⼊してデータを拡張 l Training: 6,500 instances Test: 1,500 instances TrainingとTest で代⼊したsub- sequenceの重 複がないデータ 結果
Conclusion 15 l Sequence-to-Sequenceモデルに copy mechanism を組み込んだ CopyNet を提案 l
3つの実験結果において、copy mechanismを組み込 むことで性能が⼤きく向上した l ⼊⼒⽂中のセグメントを正しくコピーでき、OOVの単 語も扱うことができた
16
参考 l ACL2016読み会@すずかけ台 http://www.lr.pi.titech.ac.jp/~sasano/acl2016suzukake/slides/08.pdf l Attentionの画像 https://hackernoon.com/attention-mechanism-in-neural-network-30aaf5e39512 17
CopyNet -Prediction- 18 1 , −1 , , = ,
, −1 , , + ( , | , −1 , , ) Generate-Mode Copy-Mode
CopyNet -State Update- 19 2 / "/* " RNNSearch /
"/* " CopyNet / / + Encoderの 隠れ層ベクトル
Experiment -Synthetic Dataset- 20
Experiment -Dialogue- 21