Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Incorporating Copying Mechanism in Sequence-to-...
Search
youichiro
October 08, 2018
Technology
0
160
Incorporating Copying Mechanism in Sequence-to-Sequence Learning
長岡技術科学大学
自然言語処理研究室
文献紹介(2018-10-09)
youichiro
October 08, 2018
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.5k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
100
Multi-Agent Dual Learning
youichiro
1
180
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
120
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
140
勉強勉強会
youichiro
0
87
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
190
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
170
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
200
Other Decks in Technology
See All in Technology
テストを軸にした生き残り術
kworkdev
PRO
0
220
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
3
590
EncryptedSharedPreferences が deprecated になっちゃった!どうしよう! / Oh no! EncryptedSharedPreferences has been deprecated! What should I do?
yanzm
0
490
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
460
Bedrock で検索エージェントを再現しようとした話
ny7760
2
110
Android Audio: Beyond Winning On It
atsushieno
0
3.4k
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
320
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
500
slog.Handlerのよくある実装ミス
sakiengineer
4
480
「Linux」という言葉が指すもの
sat
PRO
4
140
Claude Code でアプリ開発をオートパイロットにするためのTips集 Zennの場合 / Claude Code Tips in Zenn
wadayusuke
5
1.9k
20250912_RPALT_データを集める→とっ散らかる問題_Obsidian紹介
ratsbane666
0
100
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
70
11k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Making Projects Easy
brettharned
117
6.4k
Become a Pro
speakerdeck
PRO
29
5.5k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Designing for humans not robots
tammielis
253
25k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
850
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
It's Worth the Effort
3n
187
28k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
Incorporating Copying Mechanism in Sequence-to-Sequence Learning Jiatao Gu, Zhengdong Lu,
Hang Li, Victor O.K. Li Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1631–1640, 2016. ⽂献紹介(2018-10-08) ⻑岡技術科学⼤学 ⾃然⾔語処理研究室 ⼩川 耀⼀朗 1
Incorporating Copying Mechanism in Sequence-to-Sequence Learning l Sequence-to-Sequenceモデルに copy mechanism
を 組み込んだ CopyNet を提案 u ⼊⼒⽂中の重要なセグメント(単語列)をコピーする現象を扱いたい u 単語を⽣成する確率と⼊⼒単語をコピーする確率を組み合わせて出⼒ する 2
Introduction Copy mechanism: ü ⼊⼒⽂中の重要なセグメント(単語列)をコピーする現象を扱いたい ü OOVも出⼒できる 3 Copy! Copy!
⼈名 セリフ
Attention Mechanism DecodeするときにEncoder のどの隠れ層ベクトルに着 ⽬するべきかを学習 4 " = $ "&
ℎ& ( &)* Decoder Encoder Attention RNNSearch
CopyNet -overview- l RNNSearchに copy mechanism を組み込む 5
CopyNet -overview- 6 RNNSearchと同じ 導⼊部分 1 2
CopyNet -Prediction- 7 Copy-Mode Generate-Mode Encoderの 隠れ層ベクトル が⼊⼒⽂中(M)に存在しなければCopy-Modeは0 1 Decoderの出⼒
= (vocabulary内の単語が出⼒される確率) +(⼊⼒⽂中の単語がコピーされる確率)
CopyNet -State Update- 8 2 Encoderの 隠れ層ベクトル
CopyNet -State Update- 9 / "/* " RNNSearch CopyNet /
"/* " / / + "/* : "/* の • "/* が⼊⼒⽂にあれば, 対応するEncoderの隠れ 層ベクトルを返す • 無ければ0 前回の出⼒−1 に対応するEncoderの隠れ層ベクトルを加えて DecoderのStateを更新 (−1 を使って Stateを更新 )
Experiment -Synthetic Dataset- 10 系列のコピーを含む, ⼈⼯的な系列変換データを作成 l 1000種類の数値と変数x, yを組み合わせた系列を作る l
5種類の系列変換ルールに則る(下図) l 変数x, yに1~15個の数値を代⼊して多数の⼈⼯データを作成 l Training: 20,000 instances Test: 20,000 instances
Experiment -Synthetic Dataset- 11 結果
Experiment -Summarization- 12 l LCSTSデータセットで要約 l Weibo(中国のSNS)の投稿から収集したshort news(80⽂ 字未満)とその要約(10-30⽂字)の対 l
Training: 2.4M sent. Test: 725 sent. 結果
Experiment -Summarization- 13 • ⼊⼒⽂中の連続した単語もコピーできている • OOVを含む要約も⽣成できている
Experiment -Dialogue- 14 l Baidu Tieba(中国の掲⽰板)から会話を収集 l 収集した会話から1問1答の会話を173パターン抽出 l Synthetic
datasetと同様に、変数に適切なsub- sequence(⼈名, ⽇付等)を代⼊してデータを拡張 l Training: 6,500 instances Test: 1,500 instances TrainingとTest で代⼊したsub- sequenceの重 複がないデータ 結果
Conclusion 15 l Sequence-to-Sequenceモデルに copy mechanism を組み込んだ CopyNet を提案 l
3つの実験結果において、copy mechanismを組み込 むことで性能が⼤きく向上した l ⼊⼒⽂中のセグメントを正しくコピーでき、OOVの単 語も扱うことができた
16
参考 l ACL2016読み会@すずかけ台 http://www.lr.pi.titech.ac.jp/~sasano/acl2016suzukake/slides/08.pdf l Attentionの画像 https://hackernoon.com/attention-mechanism-in-neural-network-30aaf5e39512 17
CopyNet -Prediction- 18 1 , −1 , , = ,
, −1 , , + ( , | , −1 , , ) Generate-Mode Copy-Mode
CopyNet -State Update- 19 2 / "/* " RNNSearch /
"/* " CopyNet / / + Encoderの 隠れ層ベクトル
Experiment -Synthetic Dataset- 20
Experiment -Dialogue- 21