Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Noising and Denoising Natural Language: Diverse...
Search
youichiro
August 23, 2018
Technology
0
210
Noising and Denoising Natural Language: Diverse Backtranslation for Grammar Correction
長岡技術科学大学
自然言語処理研究室
文献紹介 (2018-08-23)
youichiro
August 23, 2018
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.6k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
110
Multi-Agent Dual Learning
youichiro
1
180
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
130
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
150
勉強勉強会
youichiro
0
89
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
190
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
170
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
210
Other Decks in Technology
See All in Technology
自己的售票系統自己做!
eddie
0
450
[mercari GEARS 2025] Keynote
mercari
PRO
0
250
仕様は“書く”より“語る” - 分断を超えたチーム開発の実践 / 20251115 Naoki Takahashi
shift_evolve
PRO
1
870
プログラミング言語を書く前に日本語を書く── AI 時代に求められる「言葉で考える」力/登壇資料(井田 献一朗)
hacobu
PRO
0
160
お試しで oxlint を導入してみる #vuefes_aftertalk
bengo4com
2
1.5k
旧から新へ: 大規模ウェブクローラの Perl から Go への移行 / YAPC::Fukuoka 2025
motemen
3
890
やり方は一つだけじゃない、正解だけを目指さず寄り道やその先まで自分流に楽しむ趣味プログラミングの探求 2025-11-15 YAPC::Fukuoka
sugyan
1
750
Black Hat USA 2025 Recap ~ クラウドセキュリティ編 ~
kyohmizu
0
540
[CV勉強会@関東 ICCV2025 読み会] World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model (Zheng+, ICCV 2025)
abemii
0
210
Flutterコントリビューションのススメ
d_r_1009
1
400
QAエンジニアがプロダクト専任で チームの中に入ると。。。?/登壇資料(杉森 太樹)
hacobu
PRO
1
620
フライトコントローラPX4の中身(制御器)を覗いてみた
santana_hammer
1
140
Featured
See All Featured
Thoughts on Productivity
jonyablonski
73
4.9k
Navigating Team Friction
lara
190
15k
4 Signs Your Business is Dying
shpigford
186
22k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Being A Developer After 40
akosma
91
590k
Practical Orchestrator
shlominoach
190
11k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
192
56k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Code Reviewing Like a Champion
maltzj
527
40k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Context Engineering - Making Every Token Count
addyosmani
9
380
Transcript
Noising and Denoising Natural Language: Diverse Backtranslation for Grammar Correction
Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Y. Ng, Dan Jurafsky Proceedings of NAACL-HLT 2018, pages 619–628, 2018 ⽂献紹介(2018-08-23) ⻑岡技術科学⼤学 ⾃然⾔語処理研究室 ⼩川 耀⼀朗 1
Introduction l 機械翻訳ベースの⽂法誤り訂正(GEC)アプローチでは、学習者の誤り⽂ と正しい⽂の⼤規模なパラレルコーパスが必要になることがボトルネッ クとなっている Ø 正しい⽂にノイズを加えて誤り⽂を⽣成し、学習者作⽂データの不⾜を 補う⼿法を提案 l 単純な⽅法はトークンの削除や置換を⾏うことだが、⾮現実的なノイズ
を⽣成してしまう Ø 提案⼿法では、encoder-decoderとbeam searchを組み合わせて多様 な誤り⽂を⽣成する 2
Method 3 正しい⽂から誤り⽂を⽣成 Noising model seed corpus(学習者コーパス) から正しい⽂→誤り⽂ を学習 Denoising
model 誤り⽂から正しい⽂を⽣成 (back-translation)
Model 4 l convolutional encoder-decoder model l Noising と Denoising
の両⽅でこのモデルを使⽤
Noising 正しい⽂から誤り⽂を⽣成する⽅法 ベースライン l appending clean examples Ø ノイズを加えず正しい⽂のまま使う l
token noising Ø ⽂字/単語の削除・置換をランダムに発⽣させる l reverse noising Ø 学習させたNoising modelの出⼒を使う 5
Noising 正しい⽂から誤り⽂を⽣成する⽅法 提案⼿法: Noisy modelのデコードでbeam searchする時にノイズを加える l rank penalty noising
Ø 各候補に対して#$%& のペナルティを加える Ø は対数尤度の⼤きい順ランキング、#$%& はハイパーパラメータ l top penalty noising Ø スコアの最も⾼い候補にだけ'() のペナルティを加える l random noising Ø 各候補に対して#$%+(, のペナルティを加える Ø は[0,1]からランダムに選ばれる 6 ノイズ
Denoising 誤り⽂から正しい⽂を⽣成する l beam searchの各候補のスコアを計算する際、⾔語モデル確率をスコ アに加える ./ ℎ = ℎ
+ log ./ ℎ h: 候補, λ: ハイパーパラメータ, s(): スコア関数, pLM : ⾔語モデル確率 l ⾔語モデル: 5-gram LM trained on Common Crawl corpus with KenLM 7
Training data 8 実験する訓練データ base(1.0M) : 学習者コーパス synthesized(1.0M) : 単⾔語コーパスにノイズを与えたデータ
⽐較対象の訓練データ expanded(3.3M) : 学習者コーパス
Result1 CoNLL 2013 dev and CoNLL 2014 test set 9
Result2 JFLEG test set 10
Result3 11 l 実学習者⽂と⽣成した誤り⽂を表⽰し、どちらが⽣成⽂かの2択問題を ⼈⼿評価 (誤答率)
Conclusion l GECタスクでは⼤量の学習者コーパスが必要となるが、本論⽂では Noising model、Denoising modelを⽤いて正しい⽂から誤り⽂を⽣成 する⼿法を提案し、学習者コーパスの不⾜を補った l ⽣成された誤り⽂と学習者⽂を⽐較し、⼈が⾒⽐べても区別が難しいこ とがわかった
l 実験では、⽣成したデータを加えて訓練した結果が、⼤規模な実学習者 コーパスで訓練した結果と同程度の性能を⽰した 12
13
Examples of nonsynthesized and synthesized sentences 14
Back-translation 15 Style Transfer Through Back-Translation Shrimai Prabhumoye, Yulia Tsvetkov,
Ruslan Salakhutdinov, Alan W Black 2018, ACL, pages 866–876. Figure 1
Beam search 16 https://distill.pub/2017/ctc/から引⽤
Others 17