Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
アプリケーションエンジニアから強いデータエンジニアへの歩き方 / How to transit...
Search
yuuki takezawa
October 03, 2023
Programming
1
510
アプリケーションエンジニアから強いデータエンジニアへの歩き方 / How to transition and become a Data Engineer from an Application Engineer
データエンジニアってどんなことをするの?
どうするとうまくできそうなの?の話
yuuki takezawa
October 03, 2023
Tweet
Share
More Decks by yuuki takezawa
See All by yuuki takezawa
PHPでアクターモデルを理解・体験しよう / Understand and experience the actor model in PHP
ytake
2
190
再考 アクターモデル/ reconsider actor model
ytake
0
620
GoとアクターモデルでES+CQRSを実践! / proto_actor_es_cqrs
ytake
1
320
Phluxorでアクターモデルを 理解・体験しよう / toolkit-for-flexible-actor-models-in-php-phluxor
ytake
1
230
オブジェクトのおしゃべり大失敗 メッセージングアンチパターン集 / messaging anti-pattern collection
ytake
2
1k
DRE/SREのプラクティス融合によるクラウドネイティブなデータ基盤作り / dre_sre
ytake
0
720
技術的負債と向き合う取り組みでよかったもの / positive_efforts_to_tackle_technical_debt
ytake
10
3.8k
入門 境界づけられたコンテキスト
ytake
6
4.1k
時間軸とドメインイベントとデータ処理
ytake
1
2.1k
Other Decks in Programming
See All in Programming
Webエンジニア主体のモバイルチームの 生産性を高く保つためにやったこと
igreenwood
0
320
14 Years of iOS: Lessons and Key Points
seyfoyun
1
760
The Efficiency Paradox and How to Save Yourself and the World
hollycummins
1
420
Criando Commits Incríveis no Git
marcelgsantos
2
160
Scalaから始めるOpenFeature入門 / Scalaわいわい勉強会 #4
arthur1
1
230
rails statsで大解剖 🔍 “B/43流” のRailsの育て方を歴史とともに振り返ります
shoheimitani
2
880
Haze - Real time background blurring
chrisbanes
1
500
あれやってみてー駆動から成長を加速させる / areyattemite-driven
nashiusagi
1
190
わたしの星のままで一番星になる ~ 出産を機にSIerからEC事業会社に転職した話 ~
kimura_m_29
0
170
KubeCon + CloudNativeCon NA 2024 Overviewat Kubernetes Meetup Tokyo #68 / amsy810_k8sjp68
masayaaoyama
0
230
Effective Signals in Angular 19+: Rules and Helpers @ngbe2024
manfredsteyer
PRO
0
120
【re:Growth 2024】 Aurora DSQL をちゃんと話します!
maroon1st
0
750
Featured
See All Featured
Being A Developer After 40
akosma
87
590k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Building Applications with DynamoDB
mza
91
6.1k
Designing for humans not robots
tammielis
250
25k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.3k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Six Lessons from altMBA
skipperchong
27
3.5k
Docker and Python
trallard
41
3.1k
Adopting Sorbet at Scale
ufuk
73
9.1k
Scaling GitHub
holman
458
140k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
Transcript
アプリケーションエンジニアから 強いデータエンジニアへの歩き方 ytake
データへの関わりのきっかけ - Apache HadoopやHBaseを通じてデータ処理を学ぶ - 分散処理に強いクエリエンジンやストリーム処理などを手がけ る - データからどこに問題がありそうか 予測できるようになり
解決のために自分で行動することが多くなる
これからのキャリアを考えたい 行動範囲を広げていきたい そんな方に
Agenda - データエンジニアってなにするの? - データエンジニアとして活動するための思考 - データエンジニアリングのための技術
データ基盤が必要なんだ でもなにをするものなのかわからない
データエンジニアとは - データ活用を前提にデータ収集や、管理、作成など データに関する基盤を作るエンジニア - データを元にアプリケーションに フィードバックをするなどもあり、 機械学習や一般的なアプリケーション作りも含まれる
データエンジニアへ - データ設計が好きなアプリケーションエンジニア - 自分がやりたいタイミングでデータを用意して 整備も自分でやりたいデータサイエンティスト - DB管理してるのインフラでしょ、やってよ
データエンジニアとは - データが整備されていないとなにもできないところから 整えていく - データの性質によって転送方法、加工方法が無数にある - 簡単なものか高難易度まで - データクレンジング
データ活用とは - 会社活動などにおける「意思決定」や「業務効率化」、 「マーケティング」などの向上に役立てるもの - どういうデータをエビデンスにしていけば良いか、 などは会社によって全く違うため、 何かを参考にすると活用ができるわけではない
データエンジニアをやるには - 事業・会社の課題を知る - 実際にデータを自分で見る、業務を知る - 今あるデータすらも信用しない
データエンジニアをやるには - まずは自分のために仮説検証ができるように - どこからデータがきているのか、どこが起点なのか - 自分が欲しいデータを見つける・見る・集約する
- 実装以外のやることが多い(兼務はおすすめしないです
誰かが教えてくれるわけではない 教えてくれても その人の視点だけでしかない
ドメインを噛み砕く
見つけ方が難しい! - どこからデータがきているのか、どこが起点なのか
イベントストーミング - どういうところでどういう事象が発生するのか - サービスにおけるイベントを見つけ出す - なぜなら データは事象のスナップショット
思考を鍛える - 自分が欲しいデータを見つける・見る・集約する 参考: https://www.ibm.com/docs/ja/spss-modeler/saas?topic=dm-crisp-help-overview
CRISP-DM - ビジネス課題の理解 - データの理解 - データの準備 - モデル作成 -
評価 - 共有
モデル作成・評価・共有 - DWHやデータマートなど - アプリケーションへフィードバックする仕組み - 機械学習 - 効果検証
データエンジニアもマインド必要なの? - データが揃った・揃ったら何がどうなりそうか、 これを意識して基盤作りなどをする必要がある - ただ持ってきただけだと、何を解決するためにあるのか 誰もわからない・使われない基盤になります
品質をあげる
データの品質を上げていく - 仕組みを作るだけではどうにもならない - データに関するリテラシーを上げていく - SREと同じくデータを軸にした品質向上活動をしていく - 一般的なアプリケーション開発とちょっと違う
すこし強くなる - 当事者意識を強く持つ - 今ないデータに価値がありそうか - 見えない範囲やネガティブなデータに価値がある - コミュニティを頼る(大事
今ないデータとは
生存バイアス - 装甲を厚くして撃墜されにくくする - 帰ってきた爆撃機のデータしかない、 撃墜されたものに価値がある - あるものだけに偏ってしまう - ちなみにこの図も仮説なので嘘の図
注意すること - ただのデータ抽出チームにならないこと - チームはエンジニアだけで閉じないこと - なんとなくやらない、しっかりと思想をもつ - うまくできなさそうな時は諦めること
注意すること - 97%は燃え尽きる - アプリケーションや業務フローで簡単に壊れるデータ パイプライン維持でほとんど終わってしまう - なぜ必要なのか、実現するためには文化と意識作り - 参考:
https://datadeveloperplatform.org/why_ddp_for_data/
なぜデータ基盤が必要なのか WHYが明らかになってからが最初の一歩
サイクルを回すための 実現可能な手法を習得
データ基盤ができてきた - データの取り出し方、保管の仕方、モデリングなど ドメインに合わせて最適化する - 全てSQLだけで済む、ということはあまりない - 共有するにはある程度加工が必須
ELT/ETL / そんなにフレッシュじゃない - 小難しい転送がなければdbt、Embulk、Glueなど - 転送に関して データの鮮度・更新頻度が高くないものは非常に簡単 - 鮮度がよくなるほど難しくなる
ELT/ETL / フレッシュ - イベントストーミングのイベント発生時から 保管すべきもの - Apache Kafka、Kinesisなど -
CDC(Change Data Capture)、ストリーミング処理少々 - 転送効率から選ぶことも
ELT/ETL / フレッシュ同士の結合 - Spark Streaming、Storm、Flinkなど - アプリケーション層に近いところまで寄ると マイクロサービスアーキテクチャと変わらなくなる -
アクターモデル導入
データ集約・抽出 - 静的なデータを全てGoogleに預けていい場合は BigQuery を軸に - AWSの場合はS3+Athenaが低コストで鉄板 - それらを包括したSnowflakeなど
データ加工・抽出 - 事業の課題やフィードバックの仕方によって様々 - BIツールは可視化に - レコメンデーションや自然言語処理の結果など データを利用できる様に 全文検索エンジンやワイドカラム対応の設計など
データを軸にしたプロダクトがあるのならば・・
連携システム グランドデザイン
連携システム グランドデザイン
まとめ - アプリケーションエンジニアと知識と技術 - データ分析のための思考 - パイプラインを作るためのインフラ知識 - データそのものをプロダクトとして考える
総合格闘技として様々な領域を鍛えていきましょう