Upgrade to Pro — share decks privately, control downloads, hide ads and more …

人工知能と機械学習 / AI and ML

Yukino Baba
September 26, 2019

人工知能と機械学習 / AI and ML

Yukino Baba

September 26, 2019
Tweet

More Decks by Yukino Baba

Other Decks in Education

Transcript

  1. ஜ೾େֶ৘ใՊֶྨഅ৔ઇ೫ CBCB!DTUTVLVCBBDKQ ஜ೾େֶڞ௨Պ໨ʢ৘ใʣ
 ʮσʔλαΠΤϯεʯ
 ਓ޻஌ೳͱػցֶश

  2. /39 ຊߨٛͰֶͿ͜ͱ w ਓ޻஌ೳ͕Ͳ͏͍͏৔໘Ͱ׆༻͞Ε͍ͯΔͷ͔ w ͍·ͷਓ޻஌ೳʹ͸Կ͕Ͱ͖Δͷ͔ w ػցֶशͰ͸ͲͷΑ͏ʹσʔλ͔ΒͷֶशΛߦ͏ͷ͔ ਓ޻஌ೳʹԿ͕Ͱ͖Δͷ͔ɾػցֶश͸Ͳ͏͍͏͘͠Έ͔ 2

  3. ਓ޻஌ೳ

  4. /39 ਓ޻஌ೳͱ͸ w ਓ޻஌ೳ͸
 ʮ஌తͳػցɺಛʹɺ஌తͳίϯϐϡʔλϓϩάϥϜΛ࡞ΔՊֶͱٕज़ʯ w ैདྷͷίϯϐϡʔλϓϩάϥϜ͸஌తͰ͸ͳ͔ͬͨ w ਓ͕ؒ஌ೳΛ࢖ͬͯͰ͖Δͷͱಉ͜͡ͱΛ
 ίϯϐϡʔλϓϩάϥϜͰ΋Ͱ͖ΔΑ͏ʹ͍ͨ͠

    ਓ޻஌ೳ͸ʮ஌తͳίϯϐϡʔλϓϩάϥϜʯ 4 IUUQTXXXBJHBLLBJPSKQXIBUTBJ"*GBRIUNM (*)
  5. /39 ਓ޻஌ೳͱ͸ w ஌తͰ͸ͳ͍ίϯϐϡʔλϓϩάϥϜ͸
 ༩͑ΒΕͨϧʔϧͲ͓Γͷಈ࡞͔͠Ͱ͖ͳ͍ ⿞ίϯϐϡʔλʹѻ͑ΔܗࣜͰਓ͕ؒϧʔϧΛ࡞Δඞཁ͕͋Δ ⿞ෳࡶͳ໰୊Ͱ͸͢΂ͯͷঢ়گΛ໢ཏͨ͠ϧʔϧΛ࡞Δ͜ͱ͸ࠔ೉ w ஌తͳίϯϐϡʔλϓϩάϥϜʢਓ޻஌ೳʣ͸
 ঢ়گʹԠͯ͡ͲͷΑ͏ʹಈ࡞͢Ε͹ྑ͍͔ΛྟػԠมʹ൑அ͢Δ

    ⿞ܦݧ΍ڭࡐ͔ΒϧʔϧΛֶश͢Δ ⿞গ਺ͷϧʔϧ͔Βਪ࿦ͯ͠൑அ͢Δ ਓ޻஌ೳ͸ঢ়گʹԠͯ͡ྟػԠมʹಈ࡞͢Δ 5
  6. /39 w ஌తͰ͸ͳ͍ίϯϐϡʔλϓϩάϥϜ͸ϧʔϧʹैͬͯೝࣝ͢Δ w ༷ʑͳච੻ͷखॻ͖จࣈΛ໢ཏͨ͠ϧʔϧΛ࡞Δͷ͸ࠔ೉
 
 ਓ޻஌ೳͱ͸ ྫɿखॻ͖਺ࣈจࣈΛೝࣝ͢ΔίϯϐϡʔλϓϩάϥϜ 6 खॻ͖਺ࣈจࣈͷग़యɿIUUQZBOOMFDVODPNFYECNOJTU

    1 1 ʮࠨӈࡾ෼ͷҰͷྖҬ͕ന৭ͳΒʯ
  7. /39 ਓ޻஌ೳ͸ڭࡐʢը૾ͱ਺ࣈͷϖΞʣΛ࢖ͬͯೝࣝϧʔϧΛֶश͢Δ ਓ޻஌ೳͱ͸ ྫɿखॻ͖਺ࣈจࣈΛೝࣝ͢ΔίϯϐϡʔλϓϩάϥϜ 7 1 1 9 9 7

    7 ϧʔϧΛֶश 9 ϧʔϧΛར༻ ڭࡐ ʜ खॻ͖਺ࣈจࣈͷग़యɿIUUQZBOOMFDVODPNFYECNOJTU
  8. /39 ೔ৗͷதͷਓ޻஌ೳ w εϚʔτεϐʔΧʔɿ
 ਓؒͷԻ੠ࢦࣔʹै͍༷ʑͳಈ࡞Λߦ͏ w ϩϘοτ૟আػɿ
 ো֐෺Λආ͚ͳ͕Β෦԰શମΛ૟আ͢Δ w إೝূɿ


    Χϝϥલͷਓ෺͕ొ࿥͞ΕͨਓͱಉҰਓ෺͔Ͳ͏͔Λ൑ఆ w ίϯςϯπɾ঎඼ਪનɿ
 Ӿཡཤྺ΍ߪങཤྺʹ΋ͱ͖ͮϢʔβ͕޷ΉΞΠςϜΛఏࣔ զʑͷ೔ৗͷ͞·͟·ͳ৔໘Ͱਓ޻஌ೳ͕׆༻͞Ε͍ͯΔ 8
  9. /39 ਓؒΛ௒͑Δਓ޻஌ೳ w *#.8BUTPOɿ
 ΞϝϦΧͷΫΠζ൪૊ʮ+FPQBSEZʯʹ௅ઓɺৗ࿈ग़ԋऀΛഁΓ༏উ w ౦ϩϘ͘Μɿ
 େֶೖࢼ໛ࢼͷ਺ֶɾੈք࢙Ͱภࠩ஋௒͑Λୡ੒ w %FFQ#MVFɿ


    νΣεͷੈքνϟϯϐΦϯʹউར w "MQIB(Pɿ
 ғޟͷੈքτοϓع࢜ʹউར ΫΠζ΍ήʔϜͰਓؒΛ௒͑Δਓ޻஌ೳ͕ొ৔ 9
  10. /39  ݱࡏͷਓ޻஌ೳʹͰ͖Δ͜ͱɿಛԽܕWT൚༻ܕ w ਓ޻஌ೳ͸ʮಛԽܕʯͱʮ൚༻ܕʯͷೋछྨʹେผ͞ΕΔ w ಛԽܕਓ޻஌ೳɿ
 ͋Δಛఆͷঢ়گ΍໰୊ʹ͓͍ͯ஌తʹ;Δ·͏ਓ޻஌ೳ w ൚༻ܕਓ޻஌ೳɿ


    ਓؒͱಉ༷ʹ༷ʑͳঢ়گɾ໰୊ʹ͓͍ͯ஌తͳ;Δ·͍͕Ͱ͖Δਓ޻஌ೳ w ݱࡏͷਓ޻஌ೳ͸ಛԽܕਓ޻஌ೳͰ͋Γ
 ൚༻ܕਓ޻஌ೳ͸ະ࣮ͩݱ͞Ε͍ͯͳ͍
 ݱࡏͷਓ޻஌ೳ͸ಛఆͷ͜ͱ͚ͩͰ͖ΔಛԽܕਓ޻஌ೳ 10
  11. /39 ݱࡏͷਓ޻஌ೳʹͰ͖Δ͜ͱɿը૾ॲཧ w ը૾ೝࣝɿ
 ࣸਅʹ͍ࣸͬͯΔ΋ͷΛೝࣝ͢Δ w ෺ମݕग़ɿ
 ࣸਅͷͲ͜ʹԿ͕͍ࣸͬͯΔͷ͔Λೝࣝ͢Δ w ը૾ੜ੒ɿ


    ຊ෺ͷࣸਅͷΑ͏ͳը૾Λਓ޻తʹ࡞Γग़͢ ಛԽܕਓ޻஌ೳͰ΋༷ʑͳ͜ͱ͕࣮ݱͰ͖Δ 11 ग़యɿIUUQDTOTUBOGPSEFEVTMJEFTDT[email protected]@MFDUVSFQEG
 ग़యɿIUUQTBSYJWPSHBCT ຊ෺ͷࣸਅ ਓ޻తͳࣸਅ (*) (*)
  12. /39 ݱࡏͷਓ޻஌ೳʹͰ͖Δ͜ͱɿݴޠॲཧ w จॻ෼ྨɿ
 จॻΛಛఆͷΧςΰϦʹ෼ྨ͢Δ w ػց຋༁ɿ
 ͋ΔݴޠͰॻ͔ΕͨจষΛผͷݴޠʹ຋༁͢Δ w ৘ใݕࡧɿ


    ಛఆͷ৘ใ͕ܝࡌ͞Ε͍ͯΔ΢ΣϒϖʔδΛݟ͚ͭΔ w ࣭໰Ԡ౴ɿ
 จষͰ༩͑ΒΕ࣭ͨ໰ʹର͢Δ౴͑Λฦ͢ ಛԽܕਓ޻஌ೳͰ΋༷ʑͳ͜ͱ͕࣮ݱͰ͖Δ 12
  13. /39 ݱࡏͷਓ޻஌ೳʹͰ͖Δ͜ͱɿԻ੠ॲཧ w Ի੠ೝࣝɿ
 ࿩͞Ε͍ͯΔ಺༰ΛจষͰॻ͖ى͜͢ w ࿩ऀಉఆɿ
 ొ࿥͞Εͨਓ෺ͱಉ͡ਓ͕࿩͍ͯ͠Δ͔൑ఆ͢Δ w Ի੠߹੒ɿ


    ਓ͕ؒ࿩͍ͯ͠ΔΑ͏ͳ੠Λਓ޻తʹ࡞Γग़͢ ಛԽܕਓ޻஌ೳͰ΋༷ʑͳ͜ͱ͕࣮ݱͰ͖Δ 13
  14. /39 ݱࡏͷਓ޻஌ೳʹͰ͖Δ͜ͱɿϩϘοτ w ؀ڥೝࣝɿ
 ηϯα৘ใ౳͔ΒपғʹԿ͕͋Δ͔Λೝࣝ͢Δ w ܦ࿏ɾߦಈܭըɿ
 Ҡಈɾಈ࡞ࢦࣔʹै͏ͨΊʹͲͷΑ͏ͳܦ࿏Λ௨Δ͔ɺ
 Ͳͷ෦෼ΛͲͷΑ͏ʹಈ͔͔͢Λܭը͢Δ ಛԽܕਓ޻஌ೳͰ΋༷ʑͳ͜ͱ͕࣮ݱͰ͖Δ

    14
  15. /39 ਓ޻஌ೳͷ׆༻ྫ ྫᶃεϚʔτεϐʔΧʔ ಛԽܕਓ޻஌ೳͷ૊߹ͤͰ͞Βʹߴ౓ͳ͜ͱΛ࣮ݱͰ͖Δ 15 4UFQىಈΩʔϫʔυͷೝࣝ 4UFQԻ੠ʹΑΔࢦࣔΛจষͱͯ͠ೝࣝ 4UFQࢦࣔจ͔Β໨తΛೝࣝ 4UFQࢦࣔΛ࣮ߦ

  16. /39 ਓ޻஌ೳͷ׆༻ྫ ྫᶄࣗಈӡస ಛԽܕਓ޻஌ೳͷ૊߹ͤͰ͞Βʹߴ౓ͳ͜ͱΛ࣮ݱͰ͖Δ 16 ը૾ͷग़యɿIUUQTTUPSBHFHPPHMFBQJTDPNTEDQSPEWTBGFUZSFQPSUXBZNPTBGFUZSFQPSUQEG 4UFQଞͷं྆΍าߦऀ౳ͷݕ஌ 4UFQଞͷं྆΍าߦऀ౳ͷߦಈ༧ଌ 4UFQ໨త஍·Ͱͷܦ࿏Λܭը 4UFQܦ࿏ʹै͏ͨΊͷಈ࡞Λܭը

  17. /39 ਓ޻஌ೳͷ·ͱΊ w ਓ޻஌ೳ͸஌తͳίϯϐϡʔλϓϩάϥϜͰ
 ϧʔϧΛֶशɾਪ࿦ͯ͠ྟػԠมʹಈ࡞Ͱ͖Δ w ͍·ͷਓ޻஌ೳ͸ಛԽܕͰ͋Δಛఆͷ໰୊͔͠ղ͚ͳ͍ w ༷ʑͳ෼໺ͰಛԽܕਓ޻஌ೳͷݚڀ͕ਐΊΒΕ
 ͦΕΒͷ૊߹ͤͰΑΓߴ౓ͳਓ޻஌ೳ͕࣮ݱ͞Εͭͭ͋Δ

    ͍·ͷਓ޻஌ೳ͸ಛԽܕ͕༷ͩʑͳ͜ͱ͕Ͱ͖Δ 17
  18. ػցֶश

  19. /39 ػցֶशͱ͸ w ػցֶश͸
 ίϯϐϡʔλϓϩάϥϜʹσʔλ͔ΒϧʔϧΛֶशͤ͞Δٕज़  w େྔͷೖग़ྗྫͷσʔλΛڭࡐͱͯ͠༩͑
 ೖྗͱग़ྗΛରԠ͚ͮΔϧʔϧΛֶशͤ͞Δ ೖྗͱग़ྗΛରԠ͚ͮΔϧʔϧΛֶश͢Δ

    19 ຊߨٛͰऔΓ্͛Δػցֶश͸ɺݫີʹ͸ʮڭࢣ෇͖ػցֶशʯͱݺ͹ΕΔ 7 ೖྗ ग़ྗ ը૾ ਺ࣈ
  20. /39 ػցֶशͱ͸ ೖྗͱग़ྗΛରԠ͚ͮΔϧʔϧΛֶश͢Δ 20 The quick brown fox jumps over

    the lazy dog ૉૣ͍஡৭ͷޅ͸ ͷΖ·ͳݘΛඈͼ ӽ͑Δ “Hello, world!” ೖྗ ग़ྗ ݈߁ϦεΫɿߴ ग़యɿIUUQDTOTUBOGPSEFEVTMJEFTDT[email protected]@MFDUVSFQEG
 ग़యɿIUUQTNBHFOUBUFOTPSqPXPSHOTZOUIGBTUHFO จষ จষ ը૾ ෺ମͱҐஔ Ի੠ จষ ױऀ৘ใ ݈߁ϦεΫ (*) (**)
  21. /39 ػցֶशͱ͸ w εϚʔτϑΥϯɾηϯαɾΠϯλʔωοτɾ΢ΣϒαʔϏε౳ͷීٴͰ
 σʔλ͕૿େͨ͠ͷ͕ػցֶशͷൃలͷ͖͔͚ͬ w ιʔγϟϧϝσΟΞ΁ͷ౤ߘ΍
 ΢ΣϒαʔϏε্Ͱͷਓʑͷߦಈϩά΋ػցֶशͷڭࡐͱͯ͠༻͍ΒΕΔ w ޿ࠂ഑৴ͳͲͰ΢ΣϒαʔϏεӡӦاۀ͸རӹΛ্͛ɺ


    ແྉͰ΢ΣϒαʔϏεΛఏڙ͠ͳ͕Βڭࡐ༻ͷσʔλΛऩू͍ͯ͠Δ ͋ΒΏΔ΋ͷ͕σʔλԽ͞ΕػցֶशͰ࢖ΘΕΔ 21
  22. /39 ػցֶशͷ͘͠Έɿ܇࿅σʔλ w ྫ୊ɿʮजᙾ͕ྑੑ͔ѱੑ͔ʯ൑ఆ͢ΔͨΊͷϧʔϧΛֶशͤ͞Δ w ڭࡐͱͯ͠༻͍ΔσʔλΛ܇࿅σʔλͱݺͿ w ֶशͨ͠ϧʔϧΛ༻͍ͯ
 ܇࿅σʔλʹͳ͍जᙾ͕ྑੑ͔ѱੑ͔Λਖ਼͘͠൑ఆͰ͖ΔΑ͏ʹ͍ͨ͠
 ೖग़ྗྫΛ܇࿅σʔλͱͯ͠༻͍ͯϧʔϧΛֶश͢Δ

    22 जᙾը૾ͷग़యɿW. N. Street et al. , Nuclear feature extraction for breast tumor diagnosis. Proc. of the International Symposium on Electronic Imaging, 1993. ྑੑ ѱੑ ྑੑ ѱੑ ܇࿅σʔλ ೖྗʢजᙾʣΛ
 ग़ྗʢྑੑPSѱੑʣʹ
 ରԠ͚ͮΔ
 ϧʔϧ ֶश
  23. /39 ػցֶशͷ͘͠Έɿ܇࿅σʔλ w ίϯϐϡʔλͰܭࢉͰ͖ΔΑ͏ʹ܇࿅σʔλ͸਺஋Ͱදݱ͞Ε͍ͯΔ w ྫɿʮେ͖͞ʯͱʮͰ͜΅͜౓ʯͰजᙾΛදݱ͢Δ
 ʢԿΒ͔ͷखஈͰ਺஋Խ͞Ε͍ͯΔͱ͢Δʣ ܇࿅σʔλ͸਺஋Ͱදݱ͞Εͳ͍ͱ͍͚ͳ͍ 23 ܇࿅σʔλͷྫ

    ೖྗ ग़ྗ େ͖͞ Ͱ͜΅͜౓ जᙾ 0.252 0.014 ྑੑ जᙾ 0.327 0.340 ྑੑ जᙾ 1.000 0.371 ѱੑ जᙾ 0.223 0.369 ѱੑ ʜ ʜ ʜ ʜ
  24. /39 ػցֶशͷ͘͠Έɿ܇࿅σʔλ ܇࿅σʔλ͸਺஋Ͱදݱ͞Εͳ͍ͱ͍͚ͳ͍ 24 211 220 223 … 213 217

    217 220 … 210 214 217 216 … 205 … … … … … 216 217 214 … 181 The quick brown fox jumps over the lazy dog aardvark … brown … dog … zzzat 0 … 1 … 1 … 0
  25. /39 ػցֶशͷ͘͠Έɿ܇࿅σʔλ ܇࿅σʔλ͸਺஋Ͱදݱ͞Εͳ͍ͱ͍͚ͳ͍ 25 ܇࿅σʔλͷྫ ೖྗ ग़ྗ େ͖͞ Ͱ͜΅͜౓ जᙾ

    0.252 0.014 ྑੑ जᙾ 0.327 0.340 ྑੑ जᙾ 1.000 0.371 ѱੑ जᙾ 0.223 0.369 ѱੑ ʜ ʜ ʜ ʜ ਤࣔ େ͖͞ Ͱ͜΅͜౓ ྑੑͷजᙾ ѱੑͷजᙾ जᙾ जᙾ
  26. /39 ػցֶशͷ͘͠Έɿϧʔϧ w ίϯϐϡʔλ͕ܭࢉͰ͖ΔΑ͏ʹϧʔϧ΋਺ࣜͰදݱ͞ΕΔ w ୯७ͳϧʔϧͷܗࣜɿ ϧʔϧ΋਺ࣜͰදݱ͞Εͳ͍ͱ͍͚ͳ͍ 26  େ͖͞

    Ͱ͜΅͜౓ 
  ͳΒྑੑɺͦΕҎ֎ͳΒѱੑ z = w1 × + w2 × + b; z < 0
  27. /39 ػցֶशͷ͘͠Έɿϧʔϧ ϧʔϧ΋਺ࣜͰදݱ͞Εͳ͍ͱ͍͚ͳ͍ 27 େ͖͞ Ͱ͜΅͜౓ ྑੑͷजᙾ ѱੑͷजᙾ [ʾͷྖҬ [ͷྖҬ

     ͷ৔߹ɿ
  େ͖͞ Ͱ͜΅͜౓ w1 = 1, w2 = − 1, b = 0 z = −  େ͖͞ Ͱ͜΅͜౓ z = w1 × + w2 × + b;
  28. /39 ػցֶशͷ͘͠Έɿϧʔϧ X X Cͷ஋͕มΘΔͱϧʔϧ΋มΘΔ 28 େ͖͞ Ͱ͜΅͜౓ ྑੑͷजᙾ ѱੑͷजᙾ

    [ʾͷྖҬ [ͷྖҬ  ͷ৔߹ɿ
  େ͖͞ Ͱ͜΅͜౓ w1 = 1, w2 = 1, b = − 1 z = + −1  େ͖͞ Ͱ͜΅͜౓ z = w1 × + w2 × + b;
  29. /39 ػցֶशͷ͘͠Έɿϧʔϧ ܇࿅σʔλʹ౰ͯ͸·Δྑ͍ϧʔϧΛֶश͍ͨ͠ 29 େ͖͞ Ͱ͜΅͜౓ େ͖͞ Ͱ͜΅͜౓  w1

    = 1, w2 = − 1, b = 0  w1 = 1, w2 = 1, b = − 1 ϧʔϧ͕౰ͯ͸·Βͳ͍जᙾ ӈͷϧʔϧͷํ͕ɺ܇࿅σʔλʹ౰ͯ͸·Δ
  30. /39 ػցֶशͷ͘͠Έɿଛࣦ ϧʔϧͷྑ͠ѱ͠Λ఺਺Ͱද͢ 30 ଛࣦɿେ ଛࣦɿখ େ͖͞ Ͱ͜΅͜౓ େ͖͞ Ͱ͜΅͜౓

    w ଛࣦɿϧʔϧͷѱ͞Λ఺਺Ͱදͨ͠΋ͷ w ܇࿅σʔλʹ౰ͯ͸·Βͳ͍ϧʔϧ͸ଛࣦ͕େ͖͘ͳΔ
  31. /39 ػցֶशͷ͘͠Έɿଛࣦ w ʮޡ൑ఆͷ݅਺ʯΛଛࣦͱͯ͠࢖͏ͱϧʔϧͷࡉ͔͍ҧ͍͕Θ͔Βͳ͍ w ϧʔϧʹʮѱੑͷ֬཰ʯΛग़ྗͤ͞ɺͦΕʹ΋ͱ͖ͮଛࣦΛࢉग़ ϧʔϧͷྑ͠ѱ͠Λ఺਺Ͱද͢ 31 ૯࿨Λϧʔϧͷଛࣦͱ͢Δ ଛࣦɿ

    ܇࿅σʔλ [ ѱੑͷ֬཰
 ଛࣦ ೖྗ ग़ྗ େ͖͞ Ͱ͜΅͜౓ जᙾ 0.252 0.014 ྑੑ -0.542 0.336 0.410 जᙾ 0.327 0.340 ྑੑ -0.172 0.457 0.611 जᙾ 1.000 0.371 ѱੑ 1.208 0.770 0.261 जᙾ 0.223 0.369 ѱੑ -0.348 0.414 0.882 ʜ ʜ ʜ ʜ a = σ(z)
  32. /39 ػցֶशͷ͘͠Έɿޯ഑๏ w ଛࣦ͕࠷খͷϧʔϧɺ
 ͭ·Γ܇࿅σʔλʹ࠷΋౰ͯ͸·ΔϧʔϧΛݟ͚ͭΔͷֶ͕श w ޮ཰తʹͦͷΑ͏ͳϧʔϧΛݟ͚ͭΔͨΊʹޯ഑๏͕༻͍ΒΕΔ w ޯ഑๏Ͱ͸ɺଛࣦ͕࠷΋খ͘͞ͳΔํ޲ʹগ͚ͩ͠ਐΉ
 ʢX

    X Cͷ஋Λগ͚ͩ͠มԽͤ͞Δʣ͜ͱΛ܁Γฦ͢ ଛࣦ͕࠷খͱͳΔϧʔϧʢX X Cͷ஋ʣΛݟ͚ͭΔ 32
  33. /39 ػցֶशͷ͘͠Έɿ൚Խೳྗ w ֶशͷͦ΋ͦ΋ͷ໨త͸
 ʮ܇࿅σʔλʹͳ͍ະ஌ͷೖྗʹରͯ͠ਖ਼͍͠ग़ྗΛฦ͢ʯϧʔϧͷֶश w ܇࿅σʔλ΁ͷ౰ͯ͸·Γ͚ͩΛߟྀ͢Δͱ
 ϧʔϧ͕܇࿅σʔλʹ౰ͯ͸·Γ͗ͯ͢ະ஌ͷೖྗͰ͸ؒҧ͑ΔڪΕ w X

    Xͷ஋͕ۃ୺ʹେ͖͍ϧʔϧ͸ա৒ద߹͍ͯ͠ΔڪΕ͕͋ΔͷͰ
 ͦͷΑ͏ͳϧʔϧʹϖφϧςΟΛ༩͑ΔΑ͏ʹଛࣦΛઃܭ͢Δ w ʮϧʔϧ͕ະ஌ͷೖྗʹର͠ਖ਼͍͠ग़ྗΛฦ͢ೳྗʯΛ
 ൚Խೳྗͱ͍͏ ܇࿅σʔλʹ౰ͯ͸·Γ͗͢Δϧʔϧ͸൚Խೳྗ͕௿͍ 33
  34. /39 w ௚ઢͰදݱ͞ΕΔϧʔϧ͸ೖྗͱग़ྗͷରԠ͚͕ͮෳࡶͳ৔߹ʹෆे෼ w ਂ૚ֶशΛ༻͍ΔͱෳࡶͳϧʔϧΛֶशͰ͖Δ େ͖͞ Ͱ͜΅͜౓ େ͖͞ Ͱ͜΅͜౓ ୯७ͳϧʔϧ

    ػցֶशͷ͘͠Έɿਂ૚ֶश ෳࡶͳϧʔϧͷֶशʹ༻͍ΒΕΔͷ͕ਂ૚ֶश 34 େ͖͞ Ͱ͜΅͜౓ ਂ૚ֶशʹΑΔϧʔϧ
  35. /39 w ୯७ͳϧʔϧͷ໛ࣜਤɿ ػցֶशͷ͘͠Έɿਂ૚ֶश ਂ૚ֶशͰ͸ෳ਺ͷඇઢܗؔ਺Λଟ૚ʹॏͶΔ 35 େ͖͞ Ͱ͜΅͜౓ ྑੑ·ͨ͸ѱੑ w1

    w2 a=σ(z) େ͖͞ Ͱ͜΅͜౓ ྑੑ·ͨ͸ѱੑ w ਂ૚ֶशʹΑΔϧʔϧͷ໛ࣜਤɿ
  36. /39 ػցֶशͷ࣮૷ w ػցֶशͷ࣮૷ʹ͸ɺϓϩάϥϛϯάݴޠ1ZUIPO͕޿͘࢖ΘΕ͍ͯΔ w ྫ͑͹TDJLJUMFBSOͱ͍͏1ZUIPOϥΠϒϥϦΛ࢖͏ͱɺ
 ਺ߦͷίʔυͰػցֶशΛ࣮૷͢Δ͜ͱ͕Ͱ͖Δ w ͍͔ͭ͘ͷαϯϓϧσʔλ΋TDJLJUMFBSOͰఏڙ͞Ε͍ͯΔ ༷ʑͳϥΠϒϥϦ͕ެ։͞Ε͓ͯΓ؆୯ʹ࣮૷͕Ͱ͖Δ

    36 https://scikit-learn.org/ ϧʔϧͷֶश ϧʔϧͷద༻
  37. /39 ػցֶशͷ࣮૷ w ਂ૚ֶशͷ1ZUIPOϥΠϒϥϦ΋༷ʑͳ΋ͷ͕ఏڙ͞Ε͍ͯΔɿ
 5FOTPS'MPX ,FSBT 1Z5PSDI $IBJOFS w (PPHMF$PMBCPSBUPSZΛ࢖͏ͱԾ૝ϚγϯΛ࢖ͬͯ


    ਂ૚ֶशϥΠϒϥϦΛ΢Σϒϒϥ΢β͔Β؆୯ʹ࢖͏͜ͱ͕Ͱ͖Δ ༷ʑͳϥΠϒϥϦ͕ެ։͞Ε͓ͯΓ؆୯ʹ࣮૷͕Ͱ͖Δ 37 https://colab.research.google.com
  38. /39 ػցֶशͷ࣮૷ w ,BHHMFͳͲͷػցֶशίϯϖςΟγϣϯͰ͸
 ࣮ફతͳػցֶशͷ՝୊ɾσʔλ͕ఏڙ͞Εଞऀͱڝ͏͜ͱ͕Ͱ͖Δ ػցֶशίϯϖςΟγϣϯͰྗࢼ͠Λ͢Δ͜ͱ͕Ͱ͖Δ 38 https://www.kaggle.com/c/titanic/leaderboard

  39. /39 ػցֶशͷ·ͱΊ w େྔͷೖग़ྗྫͷσʔλΛ܇࿅σʔλͱͯ͠࢖͍
 ೖྗͱग़ྗΛରԠ͚ͮΔϧʔϧΛֶश w ܇࿅σʔλʹͰ͖Δ͚ͩ౰ͯ͸·ΔΑ͏ͳϧʔϧ
 ʢଛࣦͷখ͍͞ϧʔϧʣΛޯ഑๏Λ༻͍ͯݟ͚ͭΔ ܇࿅σʔλΛ༻͍ͯೖྗͱग़ྗΛରԠ͚ͮΔϧʔϧΛֶश 39