Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Generalizing Word Embeddings using Bag of...
Search
Yumeto Inaoka
September 26, 2018
Research
0
240
文献紹介: Generalizing Word Embeddings using Bag of Subwords
2018/09/26の文献紹介で発表
Yumeto Inaoka
September 26, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
150
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
150
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
270
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
330
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Research
See All in Research
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
200
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.5k
Generative Models 2025
takahashihiroshi
21
12k
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
610
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
440
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
530
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
220
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
820
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
220
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
120
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
530
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
220
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
94
6.1k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Building Adaptive Systems
keathley
43
2.6k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Adopting Sorbet at Scale
ufuk
77
9.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
Generalizing Word Embeddings using Bag of Subwords 文献紹介 ( 2018
/ 09 / 26 ) 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature Jinman Zhao and Sidharth Mudgal and Yingyu Liang. Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing. https://arxiv.org/abs/1809.04259 2
Abstract • 文脈情報を用いずに語彙を超えて事前学習済みの Word Embeddingを汎化 • 単語をBag-of-Substringsと見做して subwordレベルの単語ベクトル生成モデルを提案 • 英単語類似度タスクでSOTAを達成
3
Word Embeddings in OOV ➔ 従来のWord Embeddingsは高頻度な単語にのみ 単語ベクトルを生成し、低頻度語をOOVとする ➔ 低頻度語には単語ベクトルを生成できない
➔ 下流のタスクで特徴が補足できず困難 4
Word Vectors for OOV words • 単語は語幹, 接辞, 修飾語など形態素に分割できる •
人間は例えば“preEMNLP”の意味を推察できる ➔ 形態素からベクトルを推測できる可能性を示唆 ➔ OOV wordsでも単語以下の単位で解析すれば 単語ベクトルを推測できる可能性がある 5
Related Works • fastText char n-gramを用いてOOVの単語のベクトルを生成 学習には大規模なコーパスが必要 (今回はenwiki) • Mimick
Char-level Bi-LSTMでChar Embeddingから Word Embeddingを推測 6
Proposed Model • 単語をBag-of-Substringsとみなす • 単語ベクトルは全部分文字列のベクトルの平均 • それを事前学習されたベクトルと一致させる学習 ➔ 文脈予測を介さずにsubwordsを学習させる
fastTextと似ているようで異なる 7
Substring Σ is the finite set of characters in the
language. 8
“<s>” = ‘<’ + s + ‘>’ Substring 9 are
hyperparameters.
Substring (example) 10 { <in, <inf, inf, infi, nfi, nfix,
fix, fix>, ix> }
Bag-of-Substring 11
Target vectors Training 12
Experiment (Word Similarity) • 単語ベクトルの類似度と、ラベル付けされた 単語類似度の相関によって評価 • 類似度は単語ベクトル間のコサイン類似度で計算 • 相関はスピアマンの順位相関係数ρで計算
13
Datasets (Word Similarity) • Polyglot, Googleは学習済み単語ベクトル • Stanford RareWord(RW)とWordSim353(WS)で評価 RWは低頻度語が多く、WSは一般的な語が多い
14
Results (Word Similarity) • BoSはEditDist, MIMICKよりも相関が強い • Googleのベクトルを用いたときにfastTextと同等 15
BoS vs. fastText • BoSの方が少ないデータ、訓練で実現 • Intel Core i7-6700 (3.4GHz)
において、 BoSはシングルスレッドのPythonで352秒 fastTextはマルチスレッドのC++で数時間 16
Expt. (syntax, semantics) • POS tags, Morphosyntactic Attributesを予測するタ スクでベクトルを評価 →
構文的、意味的特徴の補足を確認 • データセットはUniversal Dependencies (UD) • Bi-LSTMで予測 17
Result (syntax, semantics) • すべての言語で 安定して有意な 結果 • 膠着語で特に 差が大きい
18
Conclusion • 事前学習済みのWord Embeddingを拡張してOOV単 語のWord Embeddingを推定するモデルを提案 • 単語類似度タスクとPOSタグ付けタスクによって形態 論的知識の補足、より良いOOV単語の単語 ベクトルの生成を確認
19