Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Generalizing Word Embeddings using Bag of...
Search
Yumeto Inaoka
September 26, 2018
Research
0
240
文献紹介: Generalizing Word Embeddings using Bag of Subwords
2018/09/26の文献紹介で発表
Yumeto Inaoka
September 26, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
340
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
340
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
3
180
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
100
業界横断 副業・兼業者の実態調査
fkske
0
230
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
220
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
170
最適化と機械学習による問題解決
mickey_kubo
0
160
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
630
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
120
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
2
1.4k
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Designing Experiences People Love
moore
142
24k
Building Applications with DynamoDB
mza
96
6.6k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Facilitating Awesome Meetings
lara
55
6.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
It's Worth the Effort
3n
187
28k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
We Have a Design System, Now What?
morganepeng
53
7.8k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Transcript
Generalizing Word Embeddings using Bag of Subwords 文献紹介 ( 2018
/ 09 / 26 ) 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature Jinman Zhao and Sidharth Mudgal and Yingyu Liang. Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing. https://arxiv.org/abs/1809.04259 2
Abstract • 文脈情報を用いずに語彙を超えて事前学習済みの Word Embeddingを汎化 • 単語をBag-of-Substringsと見做して subwordレベルの単語ベクトル生成モデルを提案 • 英単語類似度タスクでSOTAを達成
3
Word Embeddings in OOV ➔ 従来のWord Embeddingsは高頻度な単語にのみ 単語ベクトルを生成し、低頻度語をOOVとする ➔ 低頻度語には単語ベクトルを生成できない
➔ 下流のタスクで特徴が補足できず困難 4
Word Vectors for OOV words • 単語は語幹, 接辞, 修飾語など形態素に分割できる •
人間は例えば“preEMNLP”の意味を推察できる ➔ 形態素からベクトルを推測できる可能性を示唆 ➔ OOV wordsでも単語以下の単位で解析すれば 単語ベクトルを推測できる可能性がある 5
Related Works • fastText char n-gramを用いてOOVの単語のベクトルを生成 学習には大規模なコーパスが必要 (今回はenwiki) • Mimick
Char-level Bi-LSTMでChar Embeddingから Word Embeddingを推測 6
Proposed Model • 単語をBag-of-Substringsとみなす • 単語ベクトルは全部分文字列のベクトルの平均 • それを事前学習されたベクトルと一致させる学習 ➔ 文脈予測を介さずにsubwordsを学習させる
fastTextと似ているようで異なる 7
Substring Σ is the finite set of characters in the
language. 8
“<s>” = ‘<’ + s + ‘>’ Substring 9 are
hyperparameters.
Substring (example) 10 { <in, <inf, inf, infi, nfi, nfix,
fix, fix>, ix> }
Bag-of-Substring 11
Target vectors Training 12
Experiment (Word Similarity) • 単語ベクトルの類似度と、ラベル付けされた 単語類似度の相関によって評価 • 類似度は単語ベクトル間のコサイン類似度で計算 • 相関はスピアマンの順位相関係数ρで計算
13
Datasets (Word Similarity) • Polyglot, Googleは学習済み単語ベクトル • Stanford RareWord(RW)とWordSim353(WS)で評価 RWは低頻度語が多く、WSは一般的な語が多い
14
Results (Word Similarity) • BoSはEditDist, MIMICKよりも相関が強い • Googleのベクトルを用いたときにfastTextと同等 15
BoS vs. fastText • BoSの方が少ないデータ、訓練で実現 • Intel Core i7-6700 (3.4GHz)
において、 BoSはシングルスレッドのPythonで352秒 fastTextはマルチスレッドのC++で数時間 16
Expt. (syntax, semantics) • POS tags, Morphosyntactic Attributesを予測するタ スクでベクトルを評価 →
構文的、意味的特徴の補足を確認 • データセットはUniversal Dependencies (UD) • Bi-LSTMで予測 17
Result (syntax, semantics) • すべての言語で 安定して有意な 結果 • 膠着語で特に 差が大きい
18
Conclusion • 事前学習済みのWord Embeddingを拡張してOOV単 語のWord Embeddingを推定するモデルを提案 • 単語類似度タスクとPOSタグ付けタスクによって形態 論的知識の補足、より良いOOV単語の単語 ベクトルの生成を確認
19