Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
文献紹介: Generalizing Word Embeddings using Bag of Subwords
Yumeto Inaoka
September 26, 2018
Research
0
150
文献紹介: Generalizing Word Embeddings using Bag of Subwords
2018/09/26の文献紹介で発表
Yumeto Inaoka
September 26, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
70
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
95
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
74
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
76
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
50
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
150
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
180
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
120
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
130
Other Decks in Research
See All in Research
CNNによる画像認識の基礎
sgnm
0
110
動画像を入力とした深度推定のHW/SW協調設計によるFPGAベースの高速化手法 (ARC 2022/10)
hashi0203
0
220
論文解説 Latent Diffusion Model
koharite
0
530
サイボウズのUXリサーチャーについて
cybozuinsideout
PRO
0
390
【論文紹介】Evaluating the Evaluation of Diversity in Natural Language Generation
ichiroex
2
190
[CFML勉強会#7] EconMLに実装されている異質処置効果の推定手法の紹介・再考
fullflu
0
390
【西多摩電波調査】調査報告書
5g_digitalservicetmg
0
140
2022年度伊藤ゼミ紹介
imash
0
110
OFRL: Designing an Offline Reinforcement Learning and Policy Evaluation Platform from Practical Perspectives
aiueola
0
110
論文紹介:On the Importance of Gradients for Detecting Distributional Shifts in the Wild
mkimura
2
250
SummerCake_pdf.pdf
lyh125
0
140
Confusion Detection
maosaeki
0
130
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
240
11k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
318
19k
GitHub's CSS Performance
jonrohan
1020
430k
The Pragmatic Product Professional
lauravandoore
21
3.4k
Atom: Resistance is Futile
akmur
256
24k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
15
1.2k
Rebuilding a faster, lazier Slack
samanthasiow
69
7.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
22
42k
Testing 201, or: Great Expectations
jmmastey
25
5.7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
657
120k
The World Runs on Bad Software
bkeepers
PRO
59
5.7k
The Straight Up "How To Draw Better" Workshop
denniskardys
226
130k
Transcript
Generalizing Word Embeddings using Bag of Subwords 文献紹介 ( 2018
/ 09 / 26 ) 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature Jinman Zhao and Sidharth Mudgal and Yingyu Liang. Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing. https://arxiv.org/abs/1809.04259 2
Abstract • 文脈情報を用いずに語彙を超えて事前学習済みの Word Embeddingを汎化 • 単語をBag-of-Substringsと見做して subwordレベルの単語ベクトル生成モデルを提案 • 英単語類似度タスクでSOTAを達成
3
Word Embeddings in OOV ➔ 従来のWord Embeddingsは高頻度な単語にのみ 単語ベクトルを生成し、低頻度語をOOVとする ➔ 低頻度語には単語ベクトルを生成できない
➔ 下流のタスクで特徴が補足できず困難 4
Word Vectors for OOV words • 単語は語幹, 接辞, 修飾語など形態素に分割できる •
人間は例えば“preEMNLP”の意味を推察できる ➔ 形態素からベクトルを推測できる可能性を示唆 ➔ OOV wordsでも単語以下の単位で解析すれば 単語ベクトルを推測できる可能性がある 5
Related Works • fastText char n-gramを用いてOOVの単語のベクトルを生成 学習には大規模なコーパスが必要 (今回はenwiki) • Mimick
Char-level Bi-LSTMでChar Embeddingから Word Embeddingを推測 6
Proposed Model • 単語をBag-of-Substringsとみなす • 単語ベクトルは全部分文字列のベクトルの平均 • それを事前学習されたベクトルと一致させる学習 ➔ 文脈予測を介さずにsubwordsを学習させる
fastTextと似ているようで異なる 7
Substring Σ is the finite set of characters in the
language. 8
“<s>” = ‘<’ + s + ‘>’ Substring 9 are
hyperparameters.
Substring (example) 10 { <in, <inf, inf, infi, nfi, nfix,
fix, fix>, ix> }
Bag-of-Substring 11
Target vectors Training 12
Experiment (Word Similarity) • 単語ベクトルの類似度と、ラベル付けされた 単語類似度の相関によって評価 • 類似度は単語ベクトル間のコサイン類似度で計算 • 相関はスピアマンの順位相関係数ρで計算
13
Datasets (Word Similarity) • Polyglot, Googleは学習済み単語ベクトル • Stanford RareWord(RW)とWordSim353(WS)で評価 RWは低頻度語が多く、WSは一般的な語が多い
14
Results (Word Similarity) • BoSはEditDist, MIMICKよりも相関が強い • Googleのベクトルを用いたときにfastTextと同等 15
BoS vs. fastText • BoSの方が少ないデータ、訓練で実現 • Intel Core i7-6700 (3.4GHz)
において、 BoSはシングルスレッドのPythonで352秒 fastTextはマルチスレッドのC++で数時間 16
Expt. (syntax, semantics) • POS tags, Morphosyntactic Attributesを予測するタ スクでベクトルを評価 →
構文的、意味的特徴の補足を確認 • データセットはUniversal Dependencies (UD) • Bi-LSTMで予測 17
Result (syntax, semantics) • すべての言語で 安定して有意な 結果 • 膠着語で特に 差が大きい
18
Conclusion • 事前学習済みのWord Embeddingを拡張してOOV単 語のWord Embeddingを推定するモデルを提案 • 単語類似度タスクとPOSタグ付けタスクによって形態 論的知識の補足、より良いOOV単語の単語 ベクトルの生成を確認
19