Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Integrating Meaning into Quality Evaluati...
Search
Yumeto Inaoka
August 30, 2017
Technology
0
110
文献紹介: Integrating Meaning into Quality Evaluation of Machine Translation
2017/08/30の文献紹介で発表
Yumeto Inaoka
August 30, 2017
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
210
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
260
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
180
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
190
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
180
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
300
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
380
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
260
Other Decks in Technology
See All in Technology
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
Red Hat OpenStack Services on OpenShift
tamemiya
0
140
プロポーザルに込める段取り八分
shoheimitani
1
670
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
190
Exadata Fleet Update
oracle4engineer
PRO
0
1.1k
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
520
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
210
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
(技術的には)社内システムもOKなブラウザエージェントを作ってみた!
har1101
0
330
Featured
See All Featured
A Tale of Four Properties
chriscoyier
162
24k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
HDC tutorial
michielstock
1
400
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Designing for Timeless Needs
cassininazir
0
130
Testing 201, or: Great Expectations
jmmastey
46
8.1k
Un-Boring Meetings
codingconduct
0
200
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
Transcript
Integrating Meaning into Quality Evaluation of Machine Translation Proceedings of
EACL 2017, Vol. 1, Long Papers, pages 210-219. 1 文献紹介(2017/08/30) 自然言語処理研究室 稲岡 夢人
概要 • 機械翻訳(MT)の品質はMTの出力と人間の 翻訳を比較して評価している • 上のような評価は形式に関連した特徴 (語彙や文法)に依存し意味の伝達は無視 • 意味に関連する特徴と他の評価指標を組み合 わせて人手評価を予測
2
既存手法の問題点 • MTはよく意味を保持しない翻訳を行う • BLEU, METEORはMTによる意味の変化を 直接考慮して評価していない 3
自動評価と人手評価の差 人手評価で最低の評価となった4文 1. badlyが消えて意味が失われている 2. 否定文が肯定文になっている 3. 不確かな情報を生成している 4. 形式が異なっている
4
自動評価と人手評価の差 • MTの評価では主に語彙や文法に焦点を当て ている • 下のような出力に高いスコアを与えやすい 5
本研究で行っていること • 意味に関連する特徴が人手評価に影響を与 えるのかを調べる • MTの評価における形式や意味に関連する特 徴を比較 • 形式と意味に関連する特徴を組み合わせるこ とで既存の評価手法を改善できるか測定
6
意味に関連した特徴 • Sentiment Polarity : 肯定, 否定的な感情 を持つか • Subjectivity
: 意見を表現するか • Connotation : 文化, 感情的な連想 • Negation : 肯定的記述を否定的に変化 • Speculation : 確実性のレベルを表現 • Readability : 文長, 音節数による可読性 • Formality : 文が形式的であるか 7
個々の特徴が品質に与える影響 • それぞれの特徴と人手評価の相関を調べる • データセットはWMT15の目的言語が英語で あるものを使用 8
個々の特徴が品質に与える影響 9
個々の特徴が品質に与える影響 • ベースラインより意味関連の特徴が上回る • Formality-RBが最も相関の強い特徴 • BLEU, METEOR, DPMFCombがそれより 強い相関を示す
10
複合の特徴が品質に与える影響 • 意味に関する特徴を全て用いて利用 • 意味に関する特徴全てとBLEU, METEOR, DPMFCombを組み合わせて利用 • 上のアンサンブルシステムの構築には RandomForestと呼ばれる手法を用いる
11
複合の特徴が品質に与える影響 12
複合の特徴が品質に与える影響 • 意味に関連する特徴を複合したものは BLEUより優れている • それをBLEU, METEOR, DPMFcombと 組み合わせるとさらに性能が向上 •
従来の評価手法がこれらの特徴を 補足できていないことを意味している 13
結論 • 人手評価によって高評価なMTシステムは 意味に関連した特徴を保持する • 意味に関連した特徴を用いた評価は 人手評価と高い相関を示す • 既存の評価手法と組み合わせることで より正確に人手評価を予測できる
14