Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介:What In-Context Learning “Learns” In-Conte...
Search
yuri
August 21, 2023
Research
0
610
論文紹介:What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning
yuri
August 21, 2023
Tweet
Share
More Decks by yuri
See All by yuri
データ指向モデリング「テキストマイニングの基礎」
yuri00
0
4
論文紹介:∞-former: Infinite Memory Transformer
yuri00
0
400
論文紹介:Learning Dependency-Based Compositional Semantics
yuri00
0
150
論文紹介:What Context Features Can Transformer Language Models Use?
yuri00
0
410
Other Decks in Research
See All in Research
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
250
アニメにおける宇宙猫ミームとその表現
yttrium173340
0
110
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
510
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
0
130
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
820
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
110
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
360
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
9.4k
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
280
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
390
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
150
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
400
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Typedesign – Prime Four
hannesfritz
42
2.8k
A Modern Web Designer's Workflow
chriscoyier
697
190k
It's Worth the Effort
3n
187
28k
Writing Fast Ruby
sferik
630
62k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Mobile First: as difficult as doing things right
swwweet
225
10k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Transcript
What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task
Learning Jane Pan, Tianyu Gao, Howard Chen, Danqi Chen ACL2023 Findings 村山 友理 東大和泉研 2023/08/27 第15回最先端NLP勉強会
事前学習したものを思い出してい るだけ? In-context learning は何をしているのか? 2 デモ(正しい入出力ペア)から学習 している?
• 事前学習時にダウンストリームで必要なタスクを暗黙的に学習していて、in-context のデモはどのタスクを解くべきかモデルに認識させるための情報を与えるだけ (Xie+ 22) • ICL性能は正解ラベルの使用に対してinsensitive (Min+ 22) 事前学習したものを思い出しているだけ?
3
• Transformer-based モデルは「内部モデル」を更新するために暗黙的に勾配降下 法を行っている可能性 (Akyürek+ 23), (vonOswald+ 22) • 実データセットの指標を用いると、ICLとファインチューニングには類似点がある
(Dai+ 23) デモから学習している? 4
ICLの能力を「タスク認識」と「タスク学習」に分解 5 事前学習したものを思い出してい るだけ? タスク認識 デモ(正しい入出力ペア)から学習 している? タスク学習 • それぞれの能力を評価するために、プロンプトのラベルを操作
• いろいろなモデルサイズとデモ数で実験
Random (= タスク認識) • ラベルは一様にランダムにサンプリングされる ラベル操作 1. Random 6
Abstract (=タスク学習) • プロンプトからタスク指示文を取り除き、ラベルを抽象的な記号に置換 ◦ 数字 (0, 1, 2,...) /
文字 (A, B, C,...) / 記号 (@, #, $, %, *, ∧,...) • 抽象的なラベルであっても事前学習のバイアスがある可能性 ◦ 例えば、“0”は負例っぽい ◦ バイアスを避けるために、プロンプト毎にラベルから抽象記号にランダムに写像 ラベル操作 2. Abstract 7
Gold (= タスク認識 + タスク学習) • 正解の入力・ラベルペアが与えられる従来のプロンプト ラベル操作 3. Gold
8
• データセット ◦ 4タイプのタスクに関する16の分類データセットを使用: ▪ 感情分析 ▪ 毒性検出 ▪ 自然言語推論
/ 言い換え検出 ▪ トピック / スタンス分類 • モデル ◦ GPT-3 (Brown+ 20) ▪ ada (350M), babbage (1.3B), curie (6.7B), davinci (175B) (OpenAI API) ◦ LLaMA (Touvron+ 23) ▪ 7B, 13B, 33B, 65B ◦ OPT (Zhang+ 22) ▪ 350M, 2.7B, 6.7B, 13B, 30B, 66B (Transformers library) 実験設定 9
• タスク設定 ◦ テスト用に訓練セットからデモをサンプリング ▪ GPT-3: 150 対(予算の都合により) ▪ OPT,
LLaMA: 1,350 対 ◦ 分類タスクのタイプ毎に3種類のプロンプト雛形を用意 ◦ データセットとプロンプト全体の平均を報告 実験設定 10
• Gold (= タスク認識 + タスク学習) ◦ 全体的に一番良い • Random
(= タスク認識) ◦ 性能はスケールに依らずほぼ 横ばい • Abstract (= タスク学習) ◦ モデルサイズとデモ数に応じて 増加 ◦ 小さなモデル、少ないデモ数で はRandomより低いが、パラ メータ数・デモ数が増えると逆転 ◦ LLaMA-65B以外のOPT-66Bと davinciはGOLDに匹敵 結果 11 ※ Abstractについては数字ラベルの結果
• 数字、文字、記号ラベルごとの結果は主結果と同様 • 数字と文字ラベルは一貫して記号ラベルより高かった ◦ 数字と文字は事前学習コーパス中により頻繁に出現するからかもしれない タスク学習についてラベルの違いによる傾向の差は見られない 12
• 感情分析とNLIを比較 • NLIのAbstract曲線がより平らなので、プロンプトと事前学習の質が重要 タスク学習ではタスクが単純な方がサイズとデモ数にスケールする 13
タスクのタイプ別の結果 14 感情分析 トピック / スタンス分類 毒性検出 NLI / 言い換え検出
GPT-3 LLaMA OPT
• ICLを2つの能力「タスク認識」と「タスク学習」に分解し、それぞれ異なる条件下で 発現することを示した • 小さなモデルでもタスク認識の能力はあるが、スケールしない • タスク学習の能力は大きなモデルで現れる ◦ 小さなモデルではデモを増やしても性能が上がらない ◦
大きなモデルはデモが増えると性能も向上 • Limitations ◦ 「タスク認識」と「タスク学習」に分けたが、タスク学習がデモで示されたパター ンを事前学習で学習した概念に代替しているとすれば、タスク認識の進化形と 捉えることもできるかもしれない まとめ 15