Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ECサイトにおける閲覧履歴を用いた購買に繋がる行動の変化検出 / Change Detecti...
Search
Hiroka Zaitsu
May 15, 2020
Technology
1
830
ECサイトにおける閲覧履歴を用いた購買に繋がる行動の変化検出 / Change Detection in Behavior Followed by Possible Purchase Using Electronic Commerce Site Browsing History
財津大夏, 三宅悠介
GMOペパボ株式会社 ペパボ研究所
2020.05.15 第49回 情報処理学会 インターネットと運用技術研究会
Hiroka Zaitsu
May 15, 2020
Tweet
Share
More Decks by Hiroka Zaitsu
See All by Hiroka Zaitsu
Vertex AI Matching Engine と CLIP を使って EC サービスの類似画像検索機能を作る / Development of similar image search function for EC services using Vertex AI Matching Engine and CLIP
zaimy
0
600
BigQuery の日本語データを Dataflow と Vertex AI でトピックモデリング / Topic modeling of Japanese data in BigQuery with Dataflow and Vertex AI
zaimy
1
5.2k
データサイエンティストの仕事紹介 / Data Scientist Job Introduction
zaimy
1
530
GMOペパボのサービスと研究開発を支えるデータ基盤の裏側 / Inside Story of Data Infrastructure Supporting GMO Pepabo's Services and R&D
zaimy
1
1.6k
正則化とロジスティック回帰/machine-learning-lecture-regularization-and-logistic-regression
zaimy
0
8.2k
trinity で Cloud Composer に ワークフローを簡単デプロイ / Easy workflow deployment to Cloud Composer with trinity
zaimy
0
810
ハンドメイド作品を対象としたECサイトにおける大量生産品の検出 / Detection of Mass-produced Goods at EC Site to Trade Handmade Goods
zaimy
3
4.6k
キャリアキーノート2018 / Career Keynote 2018
zaimy
1
2.1k
ウェブサービスにおける行動ログ活用基盤を通したデータ駆動マーケティングの実践 / Practice of data driven marketing using behavior log foundation system on web service
zaimy
8
2.6k
Other Decks in Technology
See All in Technology
マルチプロダクトな開発組織で 「開発生産性」に向き合うために試みたこと / Improving Multi-Product Dev Productivity
sugamasao
1
300
Security-JAWS【第35回】勉強会クラウドにおけるマルウェアやコンテンツ改ざんへの対策
4su_para
0
170
複雑なState管理からの脱却
sansantech
PRO
1
130
元旅行会社の情シス部員が教えるおすすめなre:Inventへの行き方 / What is the most efficient way to re:Invent
naospon
2
330
TanStack Routerに移行するのかい しないのかい、どっちなんだい! / Are you going to migrate to TanStack Router or not? Which one is it?
kaminashi
0
560
iOS/Androidで同じUI体験をネ イティブで作成する際に気をつ けたい落とし穴
fumiyasac0921
1
110
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.1k
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
[FOSS4G 2024 Japan LT] LLMを使ってGISデータ解析を自動化したい!
nssv
1
210
AWS Media Services 最新サービスアップデート 2024
eijikominami
0
190
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
170
開発生産性を上げながらビジネスも30倍成長させてきたチームの姿
kamina_zzz
2
1.6k
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Gamification - CAS2011
davidbonilla
80
5k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
How STYLIGHT went responsive
nonsquared
95
5.2k
GitHub's CSS Performance
jonrohan
1030
460k
For a Future-Friendly Web
brad_frost
175
9.4k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Transcript
ࡒେՆ, ࡾ༔հ / Pepabo R&D Institute, GMO Pepabo, Inc. 2020.05.15
ୈ49ճ ใॲཧֶձ Πϯλʔωοτͱӡ༻ٕज़ݚڀձ ECαΠτʹ͓͚ΔӾཡཤྺΛ༻͍ͨ ߪങʹܨ͕ΔߦಈͷมԽݕग़
1. ݚڀͷత 2. ՝ 3. ఏҊख๏ 4. ࣮ݧͱߟ 5. ·ͱΊͱࠓޙ
2 ࣍
1. ݚڀͷత
• ECαΠτΛ๚ΕΔϢʔβʔෳͷతΛ࣋ͭ • ྫʣʮΟϯυγϣοϐϯάʯʮͷ୳ࡧʯʮಛఆͷߪങʯͳͲ • ECαΠτͷӡӦऀ͕؍ଌՄೳͳϢʔβʔͷߦಈతʹΑͬͯมԽ͢Δ • ྫʣʮͷݕࡧʯʮͷӾཡʯʮͷߪങʯͳͲ ͷ୳ࡧ͕త ➡
ͷछྨͰݕࡧͯ͠ݕࡧ݁ՌΛϖʔδӾཡ ಛఆͷߪങ͕త ➡ ໊Ͱݕࡧͯ͠ϖʔδΛৄ͘͠Ӿཡ 4 ECαΠτͷϢʔβʔͷతͱߦಈ
• ϢʔβʔͷߦಈͷมԽʹ߹ΘͤͯECαΠτͷγεςϜΛదԠతʹ มԽͤ͞Δ͜ͱͰߪങͷ্͕ظ͞ΕΔ • Λ୳ࡧ͍ͯ͠Δ ➡ ଟ༷ੑͷ͋Δਪનख๏ʹΓସ͑ͯڵຯΛऒ͘ • ಛఆͷߪങΛߦ͓͏ͱ͍ͯ͠Δ ➡
ܾࡁಋઢΛࣔͯ͠ߪങΛଅ͢ • ECαΠτͷγεςϜͷదԠతͳมԽΛ࣮ݱ͢ΔͨΊʹɼ Ϣʔβʔ͕ԿΒ͔ͷߦಈΛऔͬͨޙʹมԽΛݕग़͍ͨ͠ 5 Ϣʔβʔͷߦಈʹ߹ΘͤͨECαΠτͷదԠతͳมԽ
• ECαΠτͷγεςϜͷదԠతͳมԽΛ࣮ݱ͢ΔͨΊʹɼ Ϣʔβʔ͕ԿΒ͔ͷߦಈΛऔͬͨޙʹมԽΛݕग़͍ͨ͠ • Ϣʔβʔ͕औΓ͏ΔߦಈECαΠτ͝ͱʹ༷ʑ • ຊใࠂͰECαΠτʹڞ௨ͷߦಈͱͯ͠ߪങʹܨ͕ΔߦಈͷมԽݕग़ΛఏҊ 6 ࠓճͷใࠂͷൣғ
2. ՝
• ECαΠτ͝ͱʹར༻Մೳͳಛྔͷ͏ͪɼͲΕΛߪങʹܨ͕Δߦಈͷ มԽݕग़ʹ༻͍Δ͖͔͕ະ • ಛྔΛશͯ༻͍ΔਂֶशHMMͳͲͷֶशϕʔεͷख๏͕͋Δ͕ɼ • ࣍ݩ͕૿͑Δ΄ͲඞཁͳαϯϓϧαΠζ͕૿େ͢Δ • Ϟσϧͷ൚ԽੑೳΛ্ͤ͞Δ͜ͱ͕ࠔʹͳΔ •
࣍ݩͷগͳ͍୯७ͳಛྔͰߦಈͷมԽΛݕग़Ͱ͖Δ͜ͱ͕·͍͠ 8 ՝ᶃมԽݕग़ʹ༻͍Δ͖ಛྔ͕ະ
• طଘݚڀʹ͓͚ΔʮϢʔβʔͷతʹରԠ͢ΔӾཡύλʔϯͷྨʯ(*1,2) • ॳظஈ֊ɿΧςΰϦʔϖʔδͱϖʔδΛଟ͘Ӿཡ͢Δ • ߪങͷલɿগͷϖʔδʹӾཡ͕ूத͢Δ • Ϣʔβʔ͝ͱͷ͋ΔظؒͷʮӾཡճʯͱʮͷछྨͷʯ ࣍ݩͷগͳ͍ಛྔʹͳΓ͏Δ *1
Moe, W.W.: Buying, searching, or browsing: Differentiating between online shoppers using in-store navigational clickstream, Journal of Consumer Psychology, Vol.13, Is-sues 1-2, pp.113-123 (2003). *2 Οϥϫϯɾυχɾμϋφ:ใ୳ࡧͷతΛߟྀͨ͠ߪങܾఆϞσϧ,ϚʔέςΟϯάɾαΠΤϯε, Vol.25, No.1,pp.15-35 (2017). 9 طଘݚڀ͔Βͷಛྔͷީิ
• Ϣʔβʔ͝ͱͷ͋ΔظؒͷʮӾཡʯͱʮͷछྨͷʯ ECαΠτϢʔβʔ͝ͱʹಛྔͷ͕औΔൣғʹࠩҟ͕͋Δ • શͯͷϢʔβʔʹֶ͍ͭͯशσʔλΛ४උ͢Δ͜ͱࠔ • ֶशෆཁͳΞϓϩʔνͰߦಈͷมԽΛݕग़͢Δ 10 ՝ᶄڥ͝ͱʹಛྔͷ͕औΔൣғʹࠩҟ͕͋Δ
3. ఏҊख๏
• ᶃߪങʹܨ͕ΔߦಈͷมԽݕग़ʹ༻͍Δ͖ಛྔ͕ະ • ࣍ݩͷগͳ͍୯७ͳಛྔͰߦಈͷมԽΛݕग़Ͱ͖Δ͜ͱ͕·͍͠ • ᶄڥ͝ͱʹಛྔͷ͕औΔൣғʹࠩҟ͕͋Γֶशσʔλͷ४උ͕ࠔ • ֶशෆཁͳΞϓϩʔνͰߦಈͷมԽΛݕग़͢Δ 12 ՝ͷཧ
• ECαΠτͷγεςϜͷదԠతͳมԽΛ࣮ݱ͢ΔͨΊʹɼ Ϣʔβʔ͕ԿΒ͔ͷߦಈΛऔͬͨޙʹมԽΛݕग़͍ͨ͠ • ᶃ࣍ݩͷগͳ͍୯७ͳಛྔΛ༻͍ͯᶄֶशෆཁͳΞϓϩʔνͰ ߪങʹܨ͕ΔߦಈͷมԽݕग़Λߦ͏ • ᶃͷӾཡճʹର͢Δͷଐੑͷछྨͷൺ • ઌߦݚڀΑΓɼ͜ͷߪങʹ͚ͯখ͘͞ͳΔͱԾఆ
• ᶄ౷ܭతԾઆݕఆʹΑΔฏۉͷࠩͷݕఆ 13 ఏҊख๏
• ͷӾཡճʹର͢Δͷଐੑͷछྨͷൺ • Ϣʔβʔ ͷߦಈཤྺ • ʹӾཡ ݕࡧ ͳͲ͕͋Δ •
ͷҙͷҐஔͷΟϯυ Λߟ͑Δ • ୠ͠ɼΟϯυαΠζ ͱ ͔ͭ Λຬͨ͢࠷খͷࣗવ Λ༻͍ͯ u Su = (a1 , a2 , …, al ) a aview asearch Su Wu (t) = (a′ 1 , a′ 2 , a′ 3 , …, at ) w 1 < n < w t − w + n > 0 n a′ 1 = at−w+n a′ 2 = at−w+n+1 a′ 3 = at−w+n+2 14 ಛྔͷఆٛᶃ
• ͷӾཡճʹର͢Δͷଐੑͷछྨͷൺ • ͷҙͷҐஔͷΟϯυ ʹ͓͚Δ • ͷଐੑ ͷछྨʹؔ͢Δू߹ Λ༻͍ͯ ಛྔ
• ͕খ͍͞΄Ͳߪങʹ͔͍ͬͯΔ Su Wu (t) = (a′ 1 , a′ 2 , a′ 3 , …, at ) aview ͷରͱͳͬͨͷଐੑ attr ͷछྨ ͷӾཡ aview ͷճ attr rattr(Wu (t)) = || count(aview) 15 ಛྔͷఆٛᶄ
• Ϣʔβʔɹͷߦಈཤྺ • ͰͷIDʹؔ͢Δಛྔ • ͱ ͷରͷID=1ɼ ͷରͷID=2ͱ͢Δͱ Su =
(asearch 1 , aview 2 , aview 3 , asearch 4 , aview 5 , aview 6 , aview 7 , aview 8 , aview 9 , apurchase 10 ) Wu (5) = (asearch 1 , aview 2 , aview 3 , asearch 4 , aview 5 ) aview 2 aview 3 aview 5 rID(Wu (5)) = || count(aview) = 2 3 16 ಛྔͷྫ u Wu (5)
• ಛྔͷਪҠͷΟϯυ Λߟ͑Δ • ୠ͠ɼΟϯυαΠζ ͱ ͔ͭ Λຬͨ͢࠷খͷࣗવ Λ༻͍ͯ(*) •
ΛҙͷͰೋͨ͠Οϯυ ͱ ʹରͯ͠ ౷ܭతԾઆݕఆʹΑΔฏۉͷࠩͷݕఆΛద༻ • ༗ҙਫ४ Ͱ༗ҙࠩ͋Γͱݟͳͨ͠߹ʹ ͷ࠷ॳͷཁૉΛมԽͱݟͳ͢ * r' ΛٻΊΔࣜΛݚڀใࠂͷ͔࣌Βमਖ਼͍ͯ͠·͢ W′ u (t) = (r′ 1 , r′ 2 , r′ 3 , …, rattr(Wu (t))) w′ 1 < m < w′ t − w′ + m > 0 m r′ 1 = rattr(Wu (t − w′ + m)) r′ 2 = rattr(Wu (t − w′ + m + 1)) r′ 3 = rattr(Wu (t − w′ + m + 2)) W′ u (t) W′ 1 W′ 2 s W′ 2 17 ಛྔͷਪҠΛ༻͍ͨมԽݕग़ͷఆٛᶃ
• ౷ܭతԾઆݕఆʹΑΔฏۉͷࠩͷݕఆʹ Welch ͷ ݕఆΛ༻͍Δ • Student ͷ ݕఆͷվྑ •
ࢄ͕͍͜͠ͱΛԾఆ͠ͳ͍ • ͷΈʹରԠ͕Մೳ • ඪຊͷࢄ͕͘͠ͳ͍߹ʹൣʹରԠ͠͏Δ t t 18 ಛྔͷਪҠΛ༻͍ͨมԽݕग़ͷఆٛᶄ
• ͷͱ͖ ͷ֤ʹ Welch ͷ ݕఆΛద༻ • ͱ ͷͰ༗ҙࠩ͋Γͱݟͳͨ͠߹ ͷ࣌ࠁ
ΛมԽͱݟͳ͢ W′ u (t) = (r′ 1 , r′ 2 , r′ 3 , r′ 4 , r′ 5 ) W′ 1 = (r′ 1 ) W′ 2 = (r′ 2 , r′ 3 , r′ 4 , r′ 5 ) W′ 1 = (r′ 1 , r′ 2 ) W′ 2 = (r′ 3 , r′ 4 , r′ 5 ) W′ 1 = (r′ 1 , r′ 2 , r′ 3 ) W′ 2 = (r′ 4 , r′ 5 ) W′ 1 = (r′ 1 , r′ 2 , r′ 3 , r′ 4 ) W′ 2 = (r′ 5 ) t W′ 1 = (r′ 1 , r′ 2 ) W′ 2 = (r′ 3 , r′ 4 , r′ 5 ) r′ 3 = rattr(Wu (t − w′ + m + 2)) t 19 ಛྔͷਪҠΛ༻͍ͨมԽݕग़ͷྫ
4. ࣮ݧͱߟ
• ࣮ࡍͷECαΠτͷӾཡཤྺʹ͓͚ΔఏҊख๏ͷ༗ޮੑͷݕূ • GMOϖύϘגࣜձࣾͷӡӦ͢ΔECαΠτʮminneʯͷӾཡཤྺʹద༻ͨ͠ 1. ϋΠύʔύϥϝʔλͷݕ౼ 2. ఏҊख๏ʹదͨ͠࡞ଐੑͷߟ 3. ݸผͷϢʔβʔʹର͢ΔมԽݕग़ͷ݁Ռͷ֬ೝ
• ECαΠτͷߦಈੳʹ༻͍ΒΕΔӅΕϚϧίϑϞσϧͱͷਫ਼ͷൺֱ • ܭࢉ࣌ؒͷ֬ೝ ࣮ݧͷతͱํ๏ 21
• ECαΠτʮminneʯͷϓϩμΫγϣϯڥʹ͓͚ΔӾཡཤྺ • 20203݄10͔࣌Β24࣌·Ͱͷσʔλ • Ӿཡཤྺ ͷܥྻ ͷ 96,984 Ϣʔβʔ
• ൺֱͷͨΊߪങΛߦͬͨϢʔβʔͱߦΘͳ͔ͬͨϢʔβʔʹׂ • ࡞ʹඥͮ͘4ͭͷଐੑͰ࣮ݧ • ࡞IDɼ࡞ͷग़ऀIDɼ࡞ͷΧςΰϦάϧʔϓɼ࡞ͷΧςΰϦ Su l ≥ 6 σʔληοτ 22
• ΧςΰϦάϧʔϓ • ྫʣʮϑΝογϣϯʯΧςΰϦάϧʔϓͷΧςΰϦ • TγϟπɼϫϯϐʔεɼτοϓεɼίʔτɼεΧʔτ ͳͲ ࡞ଐੑ - ࡞ͷΧςΰϦάϧʔϓͱΧςΰϦ
23
ϋΠύʔύϥϝʔλͷݕ౼ • Ӿཡཤྺ͔ΒಛྔͷΛٻΊΔࡍͷΟϯυͷ෯ Λ {5,10} Ͱ࣮ݧ • ಛྔͷͷมԽΛݕग़͢ΔࡍͷΟϯυͷ෯ Λ {3,5}
Ͱ࣮ݧ • ߪങϢʔβʔʹؔͯ͠ΑΓଟ͘ͷมԽΛݕग़͠ɼඇߪങϢʔβʔʹؔͯ͠ গͳ͍มԽΛݕग़ͨ͠ ͱ ΛҎ߱ͷ࣮ݧʹ༻͍ͨ • ༗ҙਫ४ • ׳ྫతͳͱͯ͠ Λ༻͍ͨ w w′ w = 10 w′ = 5 s s = 0.05 24
• ࡞ଐੑ͝ͱͷಛྔͷͷਪҠΛശͻ͛ਤͰ֬ೝ • ྫ ఏҊख๏ʹద͢Δ࡞ଐੑͷߟ 25 • ԣ࣠ɿ࣌ܥྻ • ॎ࣠ɿಛྔͷ
• ശͷ্ɿୈࡾ࢛Ґ • ശͷԼɿୈҰ࢛Ґ • ശͷதͷԣઢɿதԝ • ͻ͛ͷ্ɿୈࡾ࢛Ґʴ࢛Ґൣғͷ1.5ഒ • ͻ͛ͷԼɿୈҰ࢛Ґ−࢛Ґൣғͷ1.5ഒ • ͻ͛ͷ্Լͷɿ֎Ε • ͍ॎઢɿதԝʹରͯ͠ఏҊख๏Λద༻ͯ͠ݕग़ͨ͠มԽ
ఏҊख๏ʹద͢Δ࡞ଐੑ ߪങϢʔβʔ ඇߪങϢʔβʔ ࡞*% ࡞ͷग़ऀ*% 26 • ߪങϢʔβʔɿಛྔͷ͕Լ͕ΔʹมԽΛݕग़ • ඇߪങϢʔβʔɿ΄΅มԽΛݕग़͍ͯ͠ͳ͍ʢߦಈͷॳظಛྔͷͷมಈ͕େ͖͍ͨΊ1Օॴݕग़ʣ
➡ ఏҊख๏ͷಛྔʹ༻͍Δ࡞ଐੑͱͯ͠ద͍ͯ͠Δ
ఏҊख๏ʹద͞ͳ͍࡞ଐੑ ߪങϢʔβʔ ඇߪങϢʔβʔ ࡞ͷΧςΰϦάϧʔϓ ࡞ͷΧςΰϦ 27 • ߪങϢʔβʔͱඇߪങϢʔβʔͷ྆ํͰ࣌ܥྻͷॳظʹಛྔͷ͕Լ͕ΓɼͦͷޙมԽ͠ͳ͘ͳΔ • minne
ͰΧςΰϦͷߜΓࠐΈ͕ߪങͷ༗ແͱؔͳ͘ߦಈͷॳظʹߦΘΕΔ ➡ ఏҊख๏ͷಛྔʹ༻͍Δ࡞ଐੑͱͯ͠ద͍ͯ͠ͳ͍
ӅΕϚϧίϑϞσϧʢHMMʣͱͷൺֱᶃ • ݸผͷϢʔβʔʹର͢Δਫ਼ͷݕ౼ • Ϟσϧͷग़ྗΛ༧ଌϥϕϧʮߪങϢʔβʔʯʹϚοϐϯά͢Δ • ఏҊख๏ɿมԽΛݕग़ͨ͠߹ • HMMɿӅΕঢ়ଶ2ͷ͏ͪಛྔͷͷฏۉ͕͍ঢ়ଶʹભҠͨ͠߹ •
HMMͷϞσϧͷߏஙͷͨΊσʔληοτΛ9:1ʹׂ • ܇࿅σʔλɿ87,285Ϣʔβʔ • ςετσʔλɿ9,523Ϣʔβʔ 28
ӅΕϚϧίϑϞσϧʢHMMʣͱͷൺֱᶄ • ఏҊख๏ΑΓHMMͷํ͕ੵۃతʹʮߪങϢʔβʔʯͷϥϕϧΛ͚ͨ ࡞IDΛಛྔʹ༻͍ͨ߹ͷࠞಉߦྻ ਖ਼ղϥϕϧ ߪങ ඇߪങ ༧ଌϥϕϧ ఏҊख๏ ߪങ
526 4551 ඇߪങ 201 4245 HMM ߪങ 662 5571 ඇߪങ 65 3225 ࡞ͷग़ऀIDΛಛྔʹ༻͍ͨ߹ͷࠞಉߦྻ ਖ਼ղϥϕϧ ߪങ ඇߪങ ༧ଌϥϕϧ ఏҊख๏ ߪങ 483 5719 ඇߪങ 244 3077 HMM ߪങ 679 7047 ඇߪങ 48 1749 29
ӅΕϚϧίϑϞσϧʢHMMʣͱͷൺֱᶅ • ఏҊख๏ • ਅͷඇߪങϢʔβʔʹର͢Δਫ਼͕ߴ͍ • ِཅੑʹରِͯ͠ӄੑ͕͍ • ߪങʹܨ͕ΔϢʔβʔͷߦಈͷมԽݕग़ͷతʹԊ͍ͬͯΔ •
HMM • ਅͷߪങϢʔβʔʹର͢Δਫ਼͕ߴ͍ • ʮߪങ͠ͳ͔ͬͨʯʹϚοϐϯά͞ΕΔӅΕঢ়ଶͷ͕ฏۉ1.0ɼඪ४ภࠩ1.16*10−8ͱͳͬͯ ͓Γɼ͔ᷮͰಛྔͷ͕ݮগ͢Δͱʮߪങͨ͠ʯӅΕঢ়ଶʹભҠ͍ͯͨ͠ 30
ܭࢉ࣌ؒ • 3.1GHz ΫΞουίΞ Intel Core i7 Λར༻͢ΔධՁڥʹ͓͍ͯɼΟϯυ ͋ͨΓͷܭࢉ࣌ؒ1.71ϛϦඵʙ1.75ϛϦඵ
• ΣϒαΠτͷಡΈࠐΈ࣌ؒ1,000ϛϦඵະຬ͕·͍͠ͱ͞Ε͓ͯΓɼఏ Ҋख๏ʹΑΔมԽݕग़ʹֻ͔Δ࣌ؒेʹখ͍͞ W′ u (t) 31
5. ·ͱΊͱࠓޙ
·ͱΊ • ߪങʹܨ͕ΔϢʔβʔͷߦಈͷมԽݕग़ • Ӿཡཤྺ͔ΒಛྔΛ࡞ͯ͠౷ܭతԾઆݕఆʹΑͬͯมԽݕग़Λߦ͏ • ࣮ࡍͷECαΠτͷσʔλΛ༻͍ͯಛྔʹ༻͍Δଐੑͷݕ౼ͱਫ਼͓Α ͼܭࢉ࣌ؒͷ֬ೝΛߦͬͨ • HMMͱͷൺֱͰඇߪങϢʔβʔʹؔ͢Δਫ਼ʹ্ؔͯ͠ճΓɼࣄલͷֶश
͕ෆཁ 33
ࠓޙʹ͍ͭͯ • ఏҊख๏ͷਫ਼ͷվળ • ಛྔͷ͕มԽ͢Δࡍͷਖ਼ෛํͷϞσϧͷΈࠐΈ • ಛྔͷͷมಈ͕େ͖͍ظؒͷআ֎ͳͲ • ܭࢉ࣌ؒͷॖ •
มԽݕग़ʹ༻͍ΔΟϯυΛ֤ཁૉͰׂͤͣҰՕॴͰׂ͢Δ • খඪຊʹରͯ͠ؤ݈ͳ౷ܭతԾઆݕఆͷख๏ͷݕ౼ 34