Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ECサイトにおける閲覧履歴を用いた購買に繋がる行動の変化検出 / Change Detection in Behavior Followed by Possible Purchase Using Electronic Commerce Site Browsing History

ECサイトにおける閲覧履歴を用いた購買に繋がる行動の変化検出 / Change Detection in Behavior Followed by Possible Purchase Using Electronic Commerce Site Browsing History

財津大夏, 三宅悠介
GMOペパボ株式会社 ペパボ研究所
2020.05.15 第49回 情報処理学会 インターネットと運用技術研究会

Hiroka Zaitsu

May 15, 2020
Tweet

More Decks by Hiroka Zaitsu

Other Decks in Technology

Transcript

  1. ࡒ௡େՆ, ࡾ୐༔հ / Pepabo R&D Institute, GMO Pepabo, Inc.
    2020.05.15 ୈ49ճ ৘ใॲཧֶձ Πϯλʔωοτͱӡ༻ٕज़ݚڀձ
    ECαΠτʹ͓͚ΔӾཡཤྺΛ༻͍ͨ
    ߪങʹܨ͕ΔߦಈͷมԽݕग़

    View Slide

  2. 1. ݚڀͷ໨త
    2. ՝୊
    3. ఏҊख๏
    4. ࣮ݧͱߟ࡯
    5. ·ͱΊͱࠓޙ
    2
    ໨࣍

    View Slide

  3. 1.
    ݚڀͷ໨త

    View Slide

  4. • ECαΠτΛ๚ΕΔϢʔβʔ͸ෳ਺ͷ໨తΛ࣋ͭ
    • ྫʣʮ΢Οϯυ΢γϣοϐϯάʯʮ঎඼ͷ୳ࡧʯʮಛఆ঎඼ͷߪങʯͳͲ
    • ECαΠτͷӡӦऀ͕؍ଌՄೳͳϢʔβʔͷߦಈ͸໨తʹΑͬͯมԽ͢Δ
    • ྫʣʮ঎඼ͷݕࡧʯʮ঎඼ͷӾཡʯʮ঎඼ͷߪങʯͳͲ
    ঎඼ͷ୳ࡧ͕໨త ➡ ঎඼ͷछྨͰݕࡧͯ͠ݕࡧ݁ՌΛ਺ϖʔδӾཡ
    ಛఆ঎඼ͷߪങ͕໨త ➡ ঎඼໊Ͱݕࡧͯ͠঎඼ϖʔδΛৄ͘͠Ӿཡ
    4
    ECαΠτͷϢʔβʔͷ໨తͱߦಈ

    View Slide

  5. • ϢʔβʔͷߦಈͷมԽʹ߹ΘͤͯECαΠτͷγεςϜΛదԠతʹ
    มԽͤ͞Δ͜ͱͰߪങ཰ͷ޲্͕ظ଴͞ΕΔ
    • ঎඼Λ୳ࡧ͍ͯ͠Δ ➡ ଟ༷ੑͷ͋Δਪનख๏ʹ੾Γସ͑ͯڵຯΛऒ͘
    • ಛఆ঎඼ͷߪങΛߦ͓͏ͱ͍ͯ͠Δ ➡ ܾࡁಋઢΛࣔͯ͠ߪങΛଅ͢
    • ECαΠτͷγεςϜͷదԠతͳมԽΛ࣮ݱ͢ΔͨΊʹɼ
    Ϣʔβʔ͕ԿΒ͔ͷߦಈΛऔͬͨ௚ޙʹมԽΛݕग़͍ͨ͠
    5
    Ϣʔβʔͷߦಈʹ߹ΘͤͨECαΠτͷదԠతͳมԽ

    View Slide

  6. • ECαΠτͷγεςϜͷదԠతͳมԽΛ࣮ݱ͢ΔͨΊʹɼ
    Ϣʔβʔ͕ԿΒ͔ͷߦಈΛऔͬͨ௚ޙʹมԽΛݕग़͍ͨ͠
    • Ϣʔβʔ͕औΓ͏Δߦಈ͸ECαΠτ͝ͱʹ༷ʑ
    • ຊใࠂͰ͸ECαΠτʹڞ௨ͷߦಈͱͯ͠ߪങʹܨ͕ΔߦಈͷมԽݕग़ΛఏҊ
    6
    ࠓճͷใࠂͷൣғ

    View Slide

  7. 2.
    ՝୊

    View Slide

  8. • ECαΠτ͝ͱʹར༻Մೳͳಛ௃ྔͷ͏ͪɼͲΕΛߪങʹܨ͕Δߦಈͷ
    มԽݕग़ʹ༻͍Δ΂͖͔͕ະ஌
    • ಛ௃ྔΛશͯ༻͍Δਂ૚ֶश΍HMMͳͲͷֶशϕʔεͷख๏͕͋Δ͕ɼ
    • ࣍ݩ਺͕૿͑Δ΄ͲඞཁͳαϯϓϧαΠζ͕૿େ͢Δ
    • Ϟσϧͷ൚ԽੑೳΛ޲্ͤ͞Δ͜ͱ͕ࠔ೉ʹͳΔ
    • ࣍ݩ਺ͷগͳ͍୯७ͳಛ௃ྔͰߦಈͷมԽΛݕग़Ͱ͖Δ͜ͱ͕๬·͍͠
    8
    ՝୊ᶃมԽݕग़ʹ༻͍Δ΂͖ಛ௃ྔ͕ະ஌

    View Slide

  9. • طଘݚڀʹ͓͚ΔʮϢʔβʔͷ໨తʹରԠ͢ΔӾཡύλʔϯͷ෼ྨʯ(*1,2)
    • ॳظஈ֊ɿΧςΰϦʔϖʔδͱ঎඼ϖʔδΛଟ͘Ӿཡ͢Δ
    • ߪങͷ௚લɿগ਺ͷ঎඼ϖʔδʹӾཡ͕ूத͢Δ
    • Ϣʔβʔ͝ͱͷ͋Δظؒͷʮ঎඼Ӿཡճ਺ʯͱʮ঎඼ͷछྨͷ਺ʯ͸
    ࣍ݩ਺ͷগͳ͍ಛ௃ྔʹͳΓ͏Δ
    *1 Moe, W.W.: Buying, searching, or browsing: Differentiating between online shoppers using in-store navigational clickstream, Journal of Consumer
    Psychology, Vol.13, Is-sues 1-2, pp.113-123 (2003).
    *2 ΢Οϥϫϯɾυχɾμϋφ:৘ใ୳ࡧͷ໨తΛߟྀͨ͠ߪങܾఆϞσϧ,ϚʔέςΟϯάɾαΠΤϯε, Vol.25, No.1,pp.15-35 (2017).
    9
    طଘݚڀ͔Βͷಛ௃ྔͷީิ

    View Slide

  10. • Ϣʔβʔ͝ͱͷ͋Δظؒͷʮ঎඼Ӿཡ਺ʯͱʮ঎඼ͷछྨͷ਺ʯ͸
    ECαΠτ΍Ϣʔβʔ͝ͱʹಛ௃ྔͷ஋͕औΔൣғʹࠩҟ͕͋Δ
    • શͯͷϢʔβʔʹֶ͍ͭͯशσʔλΛ४උ͢Δ͜ͱ͸ࠔ೉
    • ֶशෆཁͳΞϓϩʔνͰߦಈͷมԽΛݕग़͢Δ
    10
    ՝୊ᶄ؀ڥ͝ͱʹಛ௃ྔͷ஋͕औΔൣғʹࠩҟ͕͋Δ

    View Slide

  11. 3.
    ఏҊख๏

    View Slide

  12. • ᶃߪങʹܨ͕ΔߦಈͷมԽݕग़ʹ༻͍Δ΂͖ಛ௃ྔ͕ະ஌
    • ࣍ݩ਺ͷগͳ͍୯७ͳಛ௃ྔͰߦಈͷมԽΛݕग़Ͱ͖Δ͜ͱ͕๬·͍͠
    • ᶄ؀ڥ͝ͱʹಛ௃ྔͷ஋͕औΔൣғʹࠩҟ͕͋Γֶशσʔλͷ४උ͕ࠔ೉
    • ֶशෆཁͳΞϓϩʔνͰߦಈͷมԽΛݕग़͢Δ
    12
    ՝୊ͷ੔ཧ

    View Slide

  13. • ECαΠτͷγεςϜͷదԠతͳมԽΛ࣮ݱ͢ΔͨΊʹɼ
    Ϣʔβʔ͕ԿΒ͔ͷߦಈΛऔͬͨ௚ޙʹมԽΛݕग़͍ͨ͠
    • ᶃ࣍ݩ਺ͷগͳ͍୯७ͳಛ௃ྔΛ༻͍ͯᶄֶशෆཁͳΞϓϩʔνͰ
    ߪങʹܨ͕ΔߦಈͷมԽݕग़Λߦ͏
    • ᶃ঎඼ͷӾཡճ਺ʹର͢Δ঎඼ͷଐੑͷछྨͷൺ
    • ઌߦݚڀΑΓɼ͜ͷ஋͸ߪങʹ޲͚ͯখ͘͞ͳΔͱԾఆ
    • ᶄ౷ܭతԾઆݕఆʹΑΔฏۉ஋ͷࠩͷݕఆ
    13
    ఏҊख๏

    View Slide

  14. • ঎඼ͷӾཡճ਺ʹର͢Δ঎඼ͷଐੑͷछྨͷൺ
    • Ϣʔβʔ ͷߦಈཤྺ
    • ʹ͸঎඼Ӿཡ ΍঎඼ݕࡧ ͳͲ͕͋Δ
    • ͷ೚ҙͷҐஔͷ΢Οϯυ΢ Λߟ͑Δ
    • ୠ͠ɼ΢Οϯυ΢αΠζ ͱ ͔ͭ Λຬͨ͢࠷খͷࣗવ਺ Λ༻͍ͯ
    u Su
    = (a1
    , a2
    , …, al
    )
    a aview asearch
    Su
    Wu
    (t) = (a′
    1
    , a′
    2
    , a′
    3
    , …, at
    )
    w 1 < n < w t − w + n > 0 n
    a′
    1
    = at−w+n
    a′
    2
    = at−w+n+1
    a′
    3
    = at−w+n+2
    14
    ಛ௃ྔͷఆٛᶃ

    View Slide

  15. • ঎඼ͷӾཡճ਺ʹର͢Δ঎඼ͷଐੑͷछྨͷൺ
    • ͷ೚ҙͷҐஔͷ΢Οϯυ΢ ʹ͓͚Δ
    • ঎඼ͷଐੑ ͷछྨʹؔ͢Δू߹ Λ༻͍ͯ
    ಛ௃ྔ
    • ஋͕খ͍͞΄Ͳߪങʹ޲͔͍ͬͯΔ
    Su
    Wu
    (t) = (a′
    1
    , a′
    2
    , a′
    3
    , …, at
    )
    aview ͷର৅ͱͳͬͨ঎඼ͷଐੑ attr ͷछྨ
    ঎඼ͷӾཡ aview ͷճ਺
    attr
    rattr(Wu
    (t)) =
    ||
    count(aview)
    15
    ಛ௃ྔͷఆٛᶄ

    View Slide

  16. • Ϣʔβʔɹͷߦಈཤྺ
    • Ͱͷ঎඼IDʹؔ͢Δಛ௃ྔ
    • ͱ ͷର৅ͷ঎඼ID=1ɼ ͷର৅ͷ঎඼ID=2ͱ͢Δͱ
    Su
    = (asearch
    1
    , aview
    2
    , aview
    3
    , asearch
    4
    , aview
    5
    , aview
    6
    , aview
    7
    , aview
    8
    , aview
    9
    , apurchase
    10
    )
    Wu
    (5) = (asearch
    1
    , aview
    2
    , aview
    3
    , asearch
    4
    , aview
    5
    )
    aview
    2
    aview
    3
    aview
    5
    rID(Wu
    (5)) =
    ||
    count(aview)
    =
    2
    3
    16
    ಛ௃ྔͷྫ
    u Wu
    (5)

    View Slide

  17. • ಛ௃ྔͷਪҠͷ΢Οϯυ΢ Λߟ͑Δ
    • ୠ͠ɼ΢Οϯυ΢αΠζ ͱ ͔ͭ Λຬͨ͢࠷খͷࣗવ਺ Λ༻͍ͯ(*)
    • Λ೚ҙͷ఺Ͱೋ෼ͨ͠΢Οϯυ΢ ͱ ʹରͯ͠
    ౷ܭతԾઆݕఆʹΑΔฏۉ஋ͷࠩͷݕఆΛద༻
    • ༗ҙਫ४ Ͱ༗ҙࠩ͋Γͱݟͳͨ͠৔߹ʹ ͷ࠷ॳͷཁૉΛมԽ఺ͱݟͳ͢
    * r' ΛٻΊΔࣜΛݚڀใࠂͷ࣌఺͔Βमਖ਼͍ͯ͠·͢
    W′
    u
    (t) = (r′
    1
    , r′
    2
    , r′
    3
    , …, rattr(Wu
    (t)))
    w′ 1 < m < w′ t − w′ + m > 0 m
    r′
    1
    = rattr(Wu
    (t − w′ + m))
    r′
    2
    = rattr(Wu
    (t − w′ + m + 1))
    r′
    3
    = rattr(Wu
    (t − w′ + m + 2))
    W′
    u
    (t) W′
    1
    W′
    2
    s W′
    2
    17
    ಛ௃ྔͷਪҠΛ༻͍ͨมԽݕग़ͷఆٛᶃ

    View Slide

  18. • ౷ܭతԾઆݕఆʹΑΔฏۉ஋ͷࠩͷݕఆʹ͸ Welch ͷ ݕఆΛ༻͍Δ
    • Student ͷ ݕఆͷվྑ
    • ฼෼ࢄ͕౳͍͜͠ͱΛԾఆ͠ͳ͍
    • ෼෍ͷ࿪ΈʹରԠ͕Մೳ
    • ඪຊͷ฼෼ࢄ͕౳͘͠ͳ͍৔߹ʹ΋޿ൣʹରԠ͠͏Δ
    t
    t
    18
    ಛ௃ྔͷਪҠΛ༻͍ͨมԽݕग़ͷఆٛᶄ

    View Slide

  19. • ͷͱ͖
    ͷ֤૊ʹ Welch ͷ ݕఆΛద༻
    • ͱ ͷ૊Ͱ༗ҙࠩ͋Γͱݟͳͨ͠৔߹
    ͷ࣌ࠁ ΛมԽ఺ͱݟͳ͢
    W′
    u
    (t) = (r′
    1
    , r′
    2
    , r′
    3
    , r′
    4
    , r′
    5
    )
    W′
    1
    = (r′
    1
    ) W′
    2
    = (r′
    2
    , r′
    3
    , r′
    4
    , r′
    5
    )
    W′
    1
    = (r′
    1
    , r′
    2
    ) W′
    2
    = (r′
    3
    , r′
    4
    , r′
    5
    )
    W′
    1
    = (r′
    1
    , r′
    2
    , r′
    3
    ) W′
    2
    = (r′
    4
    , r′
    5
    )
    W′
    1
    = (r′
    1
    , r′
    2
    , r′
    3
    , r′
    4
    ) W′
    2
    = (r′
    5
    )
    t
    W′
    1
    = (r′
    1
    , r′
    2
    ) W′
    2
    = (r′
    3
    , r′
    4
    , r′
    5
    )
    r′
    3
    = rattr(Wu
    (t − w′ + m + 2)) t
    19
    ಛ௃ྔͷਪҠΛ༻͍ͨมԽݕग़ͷྫ

    View Slide

  20. 4.
    ࣮ݧͱߟ࡯

    View Slide

  21. • ࣮ࡍͷECαΠτͷӾཡཤྺʹ͓͚ΔఏҊख๏ͷ༗ޮੑͷݕূ
    • GMOϖύϘגࣜձࣾͷӡӦ͢ΔECαΠτʮminneʯͷӾཡཤྺʹద༻ͨ͠
    1. ϋΠύʔύϥϝʔλͷݕ౼
    2. ఏҊख๏ʹదͨ͠࡞඼ଐੑͷߟ࡯
    3. ݸผͷϢʔβʔʹର͢ΔมԽݕग़ͷ݁Ռͷ֬ೝ
    • ECαΠτͷߦಈ෼ੳʹ༻͍ΒΕΔӅΕϚϧίϑϞσϧͱͷਫ਼౓ͷൺֱ
    • ܭࢉ࣌ؒͷ֬ೝ
    ࣮ݧͷ໨తͱํ๏
    21

    View Slide

  22. • ECαΠτʮminneʯͷϓϩμΫγϣϯ؀ڥʹ͓͚ΔӾཡཤྺ
    • 2020೥3݄1೔0͔࣌Β24࣌·Ͱͷσʔλ
    • Ӿཡཤྺ ͷܥྻ௕ ͷ 96,984 Ϣʔβʔ
    • ൺֱͷͨΊߪങΛߦͬͨϢʔβʔͱߦΘͳ͔ͬͨϢʔβʔʹ෼ׂ
    • ࡞඼ʹඥͮ͘4ͭͷଐੑͰ࣮ݧ
    • ࡞඼IDɼ࡞඼ͷग़඼ऀIDɼ࡞඼ͷΧςΰϦάϧʔϓɼ࡞඼ͷΧςΰϦ
    Su
    l ≥ 6
    σʔληοτ
    22

    View Slide

  23. • ΧςΰϦάϧʔϓ
    • ྫʣʮϑΝογϣϯʯΧςΰϦάϧʔϓͷΧςΰϦ
    • TγϟπɼϫϯϐʔεɼτοϓεɼίʔτɼεΧʔτ ͳͲ
    ࡞඼ଐੑ - ࡞඼ͷΧςΰϦάϧʔϓͱΧςΰϦ
    23

    View Slide

  24. ϋΠύʔύϥϝʔλͷݕ౼
    • Ӿཡཤྺ͔Βಛ௃ྔͷ஋ΛٻΊΔࡍͷ΢Οϯυ΢ͷ෯ Λ {5,10} Ͱ࣮ݧ
    • ಛ௃ྔͷ஋ͷมԽΛݕग़͢Δࡍͷ΢Οϯυ΢ͷ෯ Λ {3,5} Ͱ࣮ݧ
    • ߪങϢʔβʔʹؔͯ͠ΑΓଟ͘ͷมԽ఺Λݕग़͠ɼඇߪങϢʔβʔʹؔͯ͠
    গͳ͍มԽ఺Λݕग़ͨ͠ ͱ ΛҎ߱ͷ࣮ݧʹ༻͍ͨ
    • ༗ҙਫ४
    • ׳ྫతͳ஋ͱͯ͠ Λ༻͍ͨ
    w
    w′
    w = 10 w′ = 5
    s
    s = 0.05
    24

    View Slide

  25. • ࡞඼ଐੑ͝ͱͷಛ௃ྔͷ஋ͷਪҠΛശͻ͛ਤͰ֬ೝ
    • ྫ
    ఏҊख๏ʹద͢Δ࡞඼ଐੑͷߟ࡯
    25
    • ԣ࣠ɿ࣌ܥྻ
    • ॎ࣠ɿಛ௃ྔͷ஋
    • ശͷ্୺ɿୈࡾ࢛෼Ґ਺
    • ശͷԼ୺ɿୈҰ࢛෼Ґ਺
    • ശͷதͷԣઢɿதԝ஋
    • ͻ͛ͷ্୺ɿୈࡾ࢛෼Ґ਺ʴ࢛෼Ґൣғͷ1.5ഒ
    • ͻ͛ͷԼ୺ɿୈҰ࢛෼Ґ਺−࢛෼Ґൣғͷ1.5ഒ
    • ͻ͛ͷ্Լͷ఺ɿ֎Ε஋
    • ੺͍ॎઢɿதԝ஋ʹରͯ͠ఏҊख๏Λద༻ͯ͠ݕग़ͨ͠มԽ఺

    View Slide

  26. ఏҊख๏ʹద͢Δ࡞඼ଐੑ
    ߪങϢʔβʔ ඇߪങϢʔβʔ
    ࡞඼*%
    ࡞඼ͷग़඼ऀ*%
    26
    • ߪങϢʔβʔɿಛ௃ྔͷ஋͕Լ͕Δ౓ʹมԽΛݕग़
    • ඇߪങϢʔβʔɿ΄΅มԽΛݕग़͍ͯ͠ͳ͍ʢߦಈͷॳظ͸ಛ௃ྔͷ஋ͷมಈ͕େ͖͍ͨΊ1Օॴݕग़ʣ
    ➡ ఏҊख๏ͷಛ௃ྔʹ༻͍Δ࡞඼ଐੑͱͯ͠ద͍ͯ͠Δ

    View Slide

  27. ఏҊख๏ʹద͞ͳ͍࡞඼ଐੑ
    ߪങϢʔβʔ ඇߪങϢʔβʔ
    ࡞඼ͷΧςΰϦάϧʔϓ
    ࡞඼ͷΧςΰϦ
    27
    • ߪങϢʔβʔͱඇߪങϢʔβʔͷ྆ํͰ࣌ܥྻͷॳظʹಛ௃ྔͷ஋͕Լ͕ΓɼͦͷޙมԽ͠ͳ͘ͳΔ
    • minne Ͱ͸ΧςΰϦͷߜΓࠐΈ͕ߪങͷ༗ແͱؔ܎ͳ͘ߦಈͷॳظʹߦΘΕΔ
    ➡ ఏҊख๏ͷಛ௃ྔʹ༻͍Δ࡞඼ଐੑͱͯ͠ద͍ͯ͠ͳ͍

    View Slide

  28. ӅΕϚϧίϑϞσϧʢHMMʣͱͷൺֱᶃ
    • ݸผͷϢʔβʔʹର͢Δਫ਼౓ͷݕ౼
    • Ϟσϧͷग़ྗΛ༧ଌϥϕϧʮߪങϢʔβʔʯʹϚοϐϯά͢Δ
    • ఏҊख๏ɿมԽ఺Λݕग़ͨ͠৔߹
    • HMMɿӅΕঢ়ଶ2ͷ͏ͪಛ௃ྔͷ஋ͷฏۉ͕௿͍ঢ়ଶʹભҠͨ͠৔߹
    • HMMͷϞσϧͷߏஙͷͨΊσʔληοτΛ9:1ʹ෼ׂ
    • ܇࿅σʔλɿ87,285Ϣʔβʔ
    • ςετσʔλɿ9,523Ϣʔβʔ
    28

    View Slide

  29. ӅΕϚϧίϑϞσϧʢHMMʣͱͷൺֱᶄ
    • ఏҊख๏ΑΓ΋HMMͷํ͕ੵۃతʹʮߪങϢʔβʔʯͷϥϕϧΛ෇͚ͨ
    ࡞඼IDΛಛ௃ྔʹ༻͍ͨ৔߹ͷࠞಉߦྻ ਖ਼ղϥϕϧ
    ߪങ ඇߪങ
    ༧ଌϥϕϧ
    ఏҊख๏
    ߪങ 526 4551
    ඇߪങ 201 4245
    HMM
    ߪങ 662 5571
    ඇߪങ 65 3225
    ࡞඼ͷग़඼ऀIDΛಛ௃ྔʹ༻͍ͨ৔߹ͷࠞಉߦྻ ਖ਼ղϥϕϧ
    ߪങ ඇߪങ
    ༧ଌϥϕϧ
    ఏҊख๏
    ߪങ 483 5719
    ඇߪങ 244 3077
    HMM
    ߪങ 679 7047
    ඇߪങ 48 1749
    29

    View Slide

  30. ӅΕϚϧίϑϞσϧʢHMMʣͱͷൺֱᶅ
    • ఏҊख๏
    • ਅͷඇߪങϢʔβʔʹର͢Δਫ਼౓͕ߴ͍
    • ِཅੑ཰ʹରِͯ͠ӄੑ཰͕௿͍
    • ߪങʹܨ͕ΔϢʔβʔͷߦಈͷมԽݕग़ͷ໨తʹԊ͍ͬͯΔ
    • HMM
    • ਅͷߪങϢʔβʔʹର͢Δਫ਼౓͕ߴ͍
    • ʮߪങ͠ͳ͔ͬͨʯʹϚοϐϯά͞ΕΔӅΕঢ়ଶͷ෼෍͕ฏۉ1.0ɼඪ४ภࠩ1.16*10−8ͱͳͬͯ
    ͓Γɼ͔ᷮͰ΋ಛ௃ྔͷ஋͕ݮগ͢Δͱʮߪങͨ͠ʯӅΕঢ়ଶʹભҠ͍ͯͨ͠
    30

    View Slide

  31. ܭࢉ࣌ؒ
    • 3.1GHz ΫΞουίΞ Intel Core i7 Λར༻͢ΔධՁ؀ڥʹ͓͍ͯɼ΢Οϯυ
    ΢ ͋ͨΓͷܭࢉ࣌ؒ͸1.71ϛϦඵʙ1.75ϛϦඵ
    • ΢ΣϒαΠτͷಡΈࠐΈ࣌ؒ͸1,000ϛϦඵະຬ͕๬·͍͠ͱ͞Ε͓ͯΓɼఏ
    Ҋख๏ʹΑΔมԽݕग़ʹֻ͔Δ࣌ؒ͸े෼ʹখ͍͞
    W′
    u
    (t)
    31

    View Slide

  32. 5.
    ·ͱΊͱࠓޙ

    View Slide

  33. ·ͱΊ
    • ߪങʹܨ͕ΔϢʔβʔͷߦಈͷมԽݕग़
    • Ӿཡཤྺ͔Βಛ௃ྔΛ࡞੒ͯ͠౷ܭతԾઆݕఆʹΑͬͯมԽݕग़Λߦ͏
    • ࣮ࡍͷECαΠτͷσʔλΛ༻͍ͯಛ௃ྔʹ༻͍Δ঎඼ଐੑͷݕ౼ͱਫ਼౓͓Α
    ͼܭࢉ࣌ؒͷ֬ೝΛߦͬͨ
    • HMMͱͷൺֱͰ͸ඇߪങϢʔβʔʹؔ͢Δਫ਼౓ʹ্ؔͯ͠ճΓɼࣄલͷֶश
    ͕ෆཁ
    33

    View Slide

  34. ࠓޙʹ͍ͭͯ
    • ఏҊख๏ͷਫ਼౓ͷվળ
    • ಛ௃ྔͷ஋͕มԽ͢Δࡍͷਖ਼ෛํ޲ͷϞσϧ΁ͷ૊ΈࠐΈ
    • ಛ௃ྔͷ஋ͷมಈ͕େ͖͍ظؒͷআ֎ͳͲ
    • ܭࢉ࣌ؒͷ୹ॖ
    • มԽݕग़ʹ༻͍Δ΢Οϯυ΢Λ֤ཁૉͰ෼ׂͤͣҰՕॴͰ౳෼ׂ͢Δ
    • খඪຊʹରͯ͠ؤ݈ͳ౷ܭతԾઆݕఆͷख๏ͷݕ౼
    34

    View Slide