Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RG WIP 1
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
omochi
February 03, 2017
Research
0
75
RG WIP 1
This is my very first WIP presentation in RG.
(2017.02.03)
omochi
February 03, 2017
Tweet
Share
More Decks by omochi
See All by omochi
RG WIP 2017_08_02
0xomochi
0
87
ISC paper reading 2
0xomochi
0
66
ISC paper reading 1
0xomochi
0
110
Other Decks in Research
See All in Research
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
世界モデルにおける分布外データ対応の方法論
koukyo1994
7
1.4k
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
超高速データサイエンス
matsui_528
2
380
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
480
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
110
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.8k
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
700
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
LLMアプリケーションの透明性について
fufufukakaka
0
130
LiDARセキュリティ最前線(2025年)
kentaroy47
0
130
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
160
Featured
See All Featured
The Limits of Empathy - UXLibs8
cassininazir
1
210
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
Statistics for Hackers
jakevdp
799
230k
The Curious Case for Waylosing
cassininazir
0
240
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Deep Space Network (abreviated)
tonyrice
0
49
RailsConf 2023
tenderlove
30
1.3k
Building an army of robots
kneath
306
46k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Transcript
ϚϧΣΞྨʹ͚ͨ ੩తղੳʹΑΔಛநग़ *4$#ZVNF HPNBDIBO 3(8*1࠷ऴൃද
ݚڀ֓ཁ • ϚϧΣΞྨͷਫ਼͕มಈ͢Δཁૉ • ಛྔ • ಛநग़ͷํ๏ • ػցֶशΞϧΰϦζϜ •
ΞϧΰϦζϜ͝ͱʹͲͷΑ͏ͳҧ͍͕ग़Δͷ͔ʁ • ੩తղੳͷΈΛߦ͏ 2 ϚϧΣΞྨͷͨΊͷಛநग़෦ͷ։ൃ
3 എܠ
ϚϧΣΞͷݱঢ় 4 [ະϚϧΣΞͷݕମ] [ϚϧΣΞײછͷݕ] ʮຽ࿈ܞϓϩδΣΫτACTIVE ϚϧΣΞ࠷৽ϨϙʔτʯURL<http://www.active.go.jp/active/data/>ΑΓ
ղܾ͢Δ͖՝ • ײછʹؾ͕͍͔ͭͯΒඃ͕֦େ͠ͳ͍Α͏ʹରॲ͢Δ • ײછʹؾ͕͔ͭͣʹରԠ͕ΕΔ͜ͱ͋Δʢաڈʹେྔͷݸਓใ ͕ྲྀग़ͨ͠ࣄྫ͋Γʣ • ϚϧΣΞʹײછ͠ͳ͍ͨΊͷ༗ޮͳରࡦऔΒΕ͍ͯͳ͍ ɹɹɹʮײછ͔ͯ͠ΒʯରॲΛ͢Δͱ͍͏ํ ɹɹɹˠϚϧΣΞʹײછ͢Δલʹݕ͍ͨ͠
5 ϚϧΣΞײછ͕໌͔ͯ͠Βରॲ
ղܾख๏ ػցֶशΛಋೖ͢Δͱʜ • ະͷϚϧΣΞΛࣝผ͢Δ͜ͱ͕Ͱ͖ΔΑ͏ʹͳΔ ੩తղੳͱಈతղੳͷํΛ༻͍Δͱʜ • ղੳΛ্͛Δ͜ͱͰ৽छͷϚϧΣΞʹਝʹରԠ Ͱ͖ΔΑ͏ʹͳΔʢຊݚڀ੩తղੳͷΈʣ 6 ϚϧΣΞղੳʹػցֶशΛ༻͍Δ
7 ػցֶशͱ
ػցֶशͱ 8 ίϯϐϡʔλʹେྔͷσʔλΛֶशͤ͞ ύλʔϯΛݟ͚ͭग़͢͜ͱ αϯϓϧσʔλ ಛநग़ ಛྔ ղੳ ֤छػցֶश ΞϧΰϦζϜ
ʻਤɿػցֶशͷྲྀΕʼ ҰఆҎ্ͷσʔλ͕ඞཁ σʔλ͕࣋ͭಛΛද͢ϕΫτϧ ͲͷΑ͏ͳنଇ͕͋Δ͔ΛௐΔ
ػցֶशͷԠ༻ 9 Ԡ༻ ྨ ŞŽţŦžƃŞƄ ճؼ ࣍ݩݮ ॲཧ༰ • ༩͑ΒΕͨ
σʔλʹϥ ϕϧΛ͚ͭ ͯྨ • ͷྨࣅੑ Λݩʹάϧ ʔϓ͚ • աڈͷσʔ λΛݩʹক དྷͷΛ ༧ଌ • σʔλͷಛ Λҡ࣋͠ ͭͭ࣍ݩΛ Լ͛Δ ׆༻ྫ • ໎ϝʔϧ ͷྨ • खॻ͖จࣈ ͷೝࣝ • ࠂͷ͓͢ ͢Ίػೳ • גՁมಈ • ൢച༧ଌ • ܭࢉͷߴ Խ • ϝϞϦઅ
ػցֶशͷྨ 10 ྨ ڭࢣ͋Γֶश ڭࢣͳֶ͠श ڧԽֶश ֶशํ๏ (༩͑ΒΕΔ ͷ) •
σʔλ • ਖ਼ղ • σʔλ • ෆશͳ͑ ֶश݁Ռ • ະͷσʔλ ʹରͯ͠༧ଌ Λߦ͏ • ະͷσʔλ ͔ΒنଇੑΛ ൃݟ͢Δ • σʔλ͔Β࠷ దղΛൃݟ͢ Δ
ػցֶशͷΞϧΰϦζϜ 11 • TDJLJUMFBSOͰαϙʔτ͞Ε͍ͯΔΞϧΰϦζϜҎԼͷछ ʢTDJLJUMFBSOʹຊݚڀͰ༻͍Δػցֶश༻ϑϨʔϜϫʔΫͷҰछʣ • ྨ $MBTTJGJDBUJPO •
ΫϥελϦϯά $MVTUFSJOH • ճؼ 3FHSFTTJPO • ࣍ݩݮ %JNFOTJPOBMJUZ3FEVDUJPO ʢࢀߟɿTDJLJUMFBSOBMHPSJUINDIFBUTIFFUʣ
12 Ҿ༻ݩʮhttp://scikit-learn.org/stable/tutorial/machine_learning_map/ʯ ΫϥελϦϯά
13 ղੳͷྲྀΕ
ղੳͷྲྀΕ 14 ϚϧΣΞݕମΛऔಘ • Լهͷ63-Ϧετ͔ΒϚϧΣΞݕମΛऔಘ • ʮ.BMXBSF%PNBJO-JTUʯXXXNBMXBSFEPNBJOMJTUDPN • ʮ797BVMUʯIUUQWYWBVMUTJSJVS[OFU63-@-JTUQIQ •
ʮ.BMDEFʯIUUQNBMDEFDPNSTT • ݕମΛμϯϩʔυ͢Δࡍʹ5IF0OJPO3PVUFS τʔΞ Λ༻͍ͨ ɹˠଓܦ࿏Λಗ໊Խ͢Δ͜ͱͰɺϚϧΣΞղੳΛ͍ͯ͠Δ͜ͱΛѱҙͷ͋Δ ૬खʹೝ͞Εͣʹղੳ͕Ͱ͖Δ
ղੳͷྲྀΕʢ՝ʣ 15 ՝ɿσʔλྔΛ૿͢ ɹɹɾݱࡏͷݕମɿʢཧݕମɿ ʣ ɹɹɹˠσʔλྔ͕গͳ͍ͱ͑ΔΞϧΰϦζϜ͕ݶΒΕΔ ɹɹɹɹʢݱஈ֊ͰछͷΞϧΰϦζϜ͕͑Δʣ ՝ɿಉҰϑΝΠϧͷॏෳμϯϩʔυΛ͙ ɹɾμϯϩʔυ͞ΕΔݕମͭͷαΠτʹ͋ΔϦετͷத͔Β ɹɹϥϯμϜʹબΕͨͷͰ͋ΔͨΊɺಉҰϑΝΠϧ͕μϯϩʔυ
ɹɹ͞ΕΔ͜ͱ͕͋Δ
16 μϯϩʔυ͞Εͨ ϚϧΣΞݕମ ^
ղੳͷྲྀΕ 17 όΠφϦσʔλͷٯΞηϯϒϧ • ٯΞηϯϒϥͷҰछͰ͋ΔDBQTUPOFΛ༻͍ͯٯΞηϯϒϧ • ͡ΊPCKEVNQίϚϯυͰٯΞηϯϒϧͨ͠ͷΛ͓͏ͱ ࢥ͍ͬͯͨ ɹˠಛநग़ͷஈ֊Ͱͭ·͍ͮͨͷͰมߋͨ͠ •
DBQTUPOFΛ༻͍ͯٯΞηϯϒϧΛ͢ΔͨΊͷίʔυΛ1ZUIPO Ͱॻ͍͍ͯΔ్த
۩ମྫ(ϚϧΣΞݕମ”0695674e66201ac6de38fab1eba1230c” ͷٯΞηϯϒϧίʔυϦετͷҰ෦) 18 ΞυϨε όΠφϦσʔλ Φϖίʔυ χʔϞχοΫ
۩ମྫ(ϚϧΣΞݕମ”0695674e66201ac6de38fab1eba1230c” ͷٯΞηϯϒϧίʔυϦετͷҰ෦) 19 ΞυϨε όΠφϦσʔλ Φϖίʔυ χʔϞχοΫ 16ਐͷͰ࣮ߦ͞ΕΔίʔυͷ ϓϩηεϝϞϦ্ͷ൪Λද͢
۩ମྫ(ϚϧΣΞݕମ”0695674e66201ac6de38fab1eba1230c” ͷٯΞηϯϒϧίʔυϦετͷҰ෦) 20 ΞυϨε όΠφϦσʔλ Φϖίʔυ χʔϞχοΫ 16ਐͷͰද͞ΕΔσʔλͰ ϓϩηεϝϞϦ্ʹ͋Δ࣮ߦίʔυͷ࣮ଶ
۩ମྫ(ϚϧΣΞݕମ”0695674e66201ac6de38fab1eba1230c” ͷٯΞηϯϒϧίʔυϦετͷҰ෦) 21 ΞυϨε όΠφϦσʔλ Φϖίʔυ χʔϞχοΫ ػցޠͷ༰Λਓ͕ؒཧղ͍͢͠Α͏ ʹΘ͔Γ͘͢༁ͨ͠ӳࣈจࣈྻ
۩ମྫ(ϚϧΣΞݕମ”0695674e66201ac6de38fab1eba1230c” ͷٯΞηϯϒϧίʔυϦετͷҰ෦) 22 ΞυϨε όΠφϦσʔλ Φϖίʔυ χʔϞχοΫ χʔϞχοΫͷॳΊʹ͋ΔӳࣈจࣈྻͰ CPU͕ߦ͏ॲཧͷछྨΛࢦ͢ call
= APIͷݺͼग़͠
ղੳͷྲྀΕ 23 ಛྔΛநग़͢Δ "1*ͷݺͼग़͠ճΛಛྔʹ͠Α͏ͱ͕ͨ͠ʜ • جຊతʹ"1*ݺͼग़͠ϧʔϓͷதͰߦ͏ͨΊ੩తղੳΛ͢Δࡍʹ DBMMͷճΛಛྔͱͯ͋͠·Γҙຯ͕ͳ͍ • ΠϯϙʔτηΫγϣϯʹॻ͔ΕͨใͱরΒ͠߹ΘͤΔඞཁ͋Γ ɹɹΠϯϙʔτηΫγϣϯΛύʔεͯ͠ಘΒΕΔ
ɹɹɹɹɹɹ"1*ϦετΛಛྔͱ͢Δ
ղੳͷྲྀΕ • ΫϥελϦϯάͷͨΊͷΞϧΰϦζϜΛ༻͍Δ༧ఆ • .FBO4IJGU ฏۉมҐ๏ • ࢀߟ IUUQTDJLJUMFBSOPSHTUBCMFNPEVMFT
DMVTUFSJOHIUNMNFBOTIJGU ɹɾ7#(.. • ࢀߟ IUUQTDJLJUMFBSOPSHTUBCMFNPEVMFT NJYUVSFIUNMWCHNNDMBTTJGJFSWBSJBUJPOBMHBVTTJBONJYUVSFT 24 ෳͷػցֶशΞϧΰϦζϜͰղੳ
25 ༻͍ΔػցֶशΞϧΰϦζϜ
खॱ 26 ࣮த • طଘͷ63-Ϧετ͔ΒϚϧΣΞݕମΛऔಘ • ϚϧΣΞݕମͷόΠφϦσʔλΛDBQTUPOF Λ༻͍ͯٯΞηϯϒϧ • ಛநग़ͷҝͷϓϩάϥϜ࣮
ະ࣮ • ػցֶश༻ϑϨʔϜϫʔΫͷҰछͰ͋Δ TDJLJUMFBSOΛ༻͍ͯෳͷػցֶश ΞϧΰϦζϜͰϚϧΣΞΛղੳ ະ࣮
ࠓޙͷ༧ఆ • ϚϧΣΞݕମͷσʔλΛDBQTUPOFΛ༻͍ͯٯΞηϯϒϧ • ಛநग़ͷҝͷϓϩάϥϜΛ࣮ • TDJLJUMFBSOΛ༻͍ͯෳͷػցֶशΞϧΰϦζϜͰϚϧΣΞ Λղੳ 27 ࣮͔ΒධՁ·Ͱ
ࠓޙͷܭը 28 2݄ 3݄ 4݄ 5݄ 6݄ Πϕϯτ WIP(RGൃද) WIPதؒ
ಛநग़ ಛྔͷಡΈࠐΈ ݁Ռूܭ ධՁ ৽ςʔϚ
དྷظҎ߱ͷඪ 29 • ࠓֶظطଘͷݚڀΛͳͧͬͨͷ • དྷظҎ߱ΑΓಠࣗੑͷ͋ΔςʔϚΛઃఆ͢Δ • ίʔσΟϯάྗΛ͚ͭΔ • ػցֶश
ϚϧΣΞʹؔ͢ΔࣝΛਂΊΔ • ΑΓଟ͘ͷؔ࿈ݚڀ ࢿྉʹ͋ͨΔ
ࢀߟจݙ • ஶऀɿΫδϥඈߦص ʮ1ZUIPOʹΑΔεΫϨΠϐϯάػցֶशʯग़൛ࣾɿιγϜ ग़൛ɿ • ʮίʔυͷಛʹجͮ͘ѱੑϓϩάϥϜͷྨʯүҪརએʢʣ • ʮޮతͳղੳΛతͱͨࣗ͠ಈϚϧΣΞྨʹؔ͢Δݚڀʯؠଜʢʣ
• ʮ0OUIF4FDVSJUZPG.BDIJOF-FBSOJOHJO.BMXBSF$$%FUFDUJPO"4VSWFZʯ+PTFQI (BSEJOFS 4IJTIJS/BHBSBKB -BODBTUFS6OJWFSTJUZʢʣ • ʮ"CZTT8BUDIFS.BMXBSF%PXOMPBEFSʯ63-IUUQTHJUIVCDPNOUEEL"CZTT 8BUDIFS • ʮ"$5*7&ʢϚϧΣΞରࡦࢧԉʣ)1ʯ63-IUUQXXXBDUJWFHPKQTFDVSJUZNBMXBSF 30
ࠓޙͷ༧ఆ • ϚϧΣΞݕମͷσʔλΛDBQTUPOFΛ༻͍ͯٯΞηϯϒϧ • ಛநग़ͷҝͷϓϩάϥϜΛ࣮ • TDJLJUMFBSOΛ༻͍ͯෳͷػցֶशΞϧΰϦζϜͰϚϧΣΞ Λղੳ 31 ࣮͔ΒධՁ·Ͱ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠