Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オートエンコーダーによる異常検知
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Masafumi Abeta
February 17, 2021
Programming
0
350
オートエンコーダーによる異常検知
2021年2月17日の社内勉強会で発表した資料です。
Masafumi Abeta
February 17, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
1
380
GPTモデルでキャラクター設定する際の課題
abeta
0
350
GPTをLINEで使えるようにして布教した
abeta
0
190
【Nishika】プリント基板の電子部品検出
abeta
0
330
初心者向けChatGPT入門
abeta
0
250
GPT Short Talk
abeta
0
140
拡散モデルについて少しだけ
abeta
0
73
動的計画モデル
abeta
0
180
物体追跡
abeta
0
320
Other Decks in Programming
See All in Programming
Raku Raku Notion 20260128
hareyakayuruyaka
0
370
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
480
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
140
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
440
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
140
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.4k
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
330
AI & Enginnering
codelynx
0
120
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
150
Apache Iceberg V3 and migration to V3
tomtanaka
0
170
Featured
See All Featured
What does AI have to do with Human Rights?
axbom
PRO
0
2k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
120
Scaling GitHub
holman
464
140k
30 Presentation Tips
portentint
PRO
1
230
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
950
Deep Space Network (abreviated)
tonyrice
0
66
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
A Tale of Four Properties
chriscoyier
162
24k
Accessibility Awareness
sabderemane
0
57
How to train your dragon (web standard)
notwaldorf
97
6.5k
Transcript
オートエンコーダーによる異常検知 Abeta
画像の異常検知 • 異常検知=他の⼤多数のデータとは異なる特徴を持つデータを⾒つける。 正常 異常
オートエンコーダー Encoder Decoder • 正常画像で特徴を抽出、画像を復元するモデルを学習する。 モデルに異常画像を通し、復元できない差分で異常を検知する。 正常 異常
従来モデルの⽋点 Encoder Decoder • 局所的な異常が画像全体の再構成に影響を与える。異常箇所の同定が困難になる。 また、VAEは出⼒画像がぼやけることが知られている。 理想 現実
新⼿法 • 異常画像の異常な部分だけを再構成画像に近づけるようにする。 [arXiv:2002.03734]Iterative energy-based projection on a normal data
manifold for anomaly localization Encoder Decoder 異常箇所のみ 再構成画像に 置き換える ① ② ③ ④ ①〜③を繰り返した後 ⽐較して異常度を出⼒ ⽐較して異常箇所を特定 推論
難しい説明 正常画像の集合 ⼊⼒異常画像 𝒙𝟎 " 𝒙𝟎 VAE再構成画像 𝒙𝒕"𝟏 = 𝒙𝒕
− 𝜶 % 𝛁𝒙 𝑬 𝒙𝒕 ⊙ 𝒙𝒕 − 𝒇 𝒙𝒕 𝟐 再構成誤差 L1正則化 正常部分を⼊⼒画 像に保ちつつ再構 成画像に近づける 異常箇所のピク セルに重み付け " 𝒙𝟏 " 𝒙𝒕 𝒙𝟏 𝒙𝒕 正常箇所のピクセルは𝒙𝟎 と同じ値に保ちつつ異常 箇所のピクセルは再構成 画像に近づける 再構成画像は イテレーションで ほとんど変わらない 𝑬 𝒙𝒕 = 𝓛 𝒙𝒕 + 𝝀||𝒙𝒕 − 𝒙𝟎|| Pixel Space ぼやけるため正常画像の 集合からは少しずれる 異常箇所の ピクセル 正常箇所の ピクセル 正常箇所の ピクセル イテレーション
L1正則化の補⾜ 正常画像の集合 ⼊⼒異常画像 𝒙𝟎 " 𝒙𝟎 VAE再構成画像 𝒙𝒕"𝟏 = 𝒙𝒕
− 𝜶 % 𝛁𝒙 𝑬 𝒙𝒕 ⊙ 𝒙𝒕 − 𝒇 𝒙𝒕 𝟐 再構成誤差 L1正則化 正常部分を⼊⼒画 像に保ちつつ再構 成画像に近づける 異常箇所のピク セルに重み付け " 𝒙𝟏 " 𝒙𝒕 𝒙𝟏 𝒙𝒕 𝑬 𝒙𝒕 = 𝓛 𝒙𝒕 + 𝝀||𝒙𝒕 − 𝒙𝟎|| Pixel Space ぼやけるため正常画像の 集合からは少しずれる 異常箇所の ピクセル 正常箇所の ピクセル 正常箇所の ピクセル イテレーション MSEの場合
知⾒ • そもそもかなり学習させないとVAEで綺麗な再構成画像を作れない • 𝛼と𝜆とイテレーション回数のチューニングはかなり技巧的 • イテレーション数⼗回のオーダーで必要 • イテレーションによる再構成画像はほとんど変化がない(多分) 再構成の精度が低いから?
• 再構成誤差の計測は交差エントロピーよりMAEのほうがよい • “Reduce Failed to Synchronise”エラーが出るとカーネルの再起動が必要
参考 • 「 Iterative energy-based projection on a normal data
manifold for anomaly localization」, David Dehaene, Oriel Frigo, Sébastien Combrexelle, Pierre Eline, ICLR 2020 Conference Blind Submission • “ICLR2020の異常検知論⽂を実装してみた”, https://qiita.com/kogepan102/items/122b2862ad5a51180656 • “ICLR2020の異常検知論⽂の紹介”, https://www.slideshare.net/ssuser9eb780/iclr2020-20191123