Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オートエンコーダーによる異常検知
Search
Masafumi Abeta
February 17, 2021
Programming
0
260
オートエンコーダーによる異常検知
2021年2月17日の社内勉強会で発表した資料です。
Masafumi Abeta
February 17, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
41
GPTモデルでキャラクター設定する際の課題
abeta
0
210
GPTをLINEで使えるようにして布教した
abeta
0
120
【Nishika】プリント基板の電子部品検出
abeta
0
210
初心者向けChatGPT入門
abeta
0
180
GPT Short Talk
abeta
0
99
拡散モデルについて少しだけ
abeta
0
27
動的計画モデル
abeta
0
130
物体追跡
abeta
0
250
Other Decks in Programming
See All in Programming
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
0
120
Nurturing OpenJDK distribution: Eclipse Temurin Success History and plan
ivargrimstad
0
960
Why Jakarta EE Matters to Spring - and Vice Versa
ivargrimstad
0
1.1k
Ethereum_.pdf
nekomatu
0
460
CSC509 Lecture 09
javiergs
PRO
0
140
LLM生成文章の精度評価自動化とプロンプトチューニングの効率化について
layerx
PRO
2
190
Snowflake x dbtで作るセキュアでアジャイルなデータ基盤
tsoshiro
2
520
Figma Dev Modeで変わる!Flutterの開発体験
watanave
0
140
Enabling DevOps and Team Topologies Through Architecture: Architecting for Fast Flow
cer
PRO
0
340
Click-free releases & the making of a CLI app
oheyadam
2
120
ペアーズにおけるAmazon Bedrockを⽤いた障害対応⽀援 ⽣成AIツールの導⼊事例 @ 20241115配信AWSウェビナー登壇
fukubaka0825
6
2k
ローコードSaaSのUXを向上させるためのTypeScript
taro28
1
630
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Facilitating Awesome Meetings
lara
50
6.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
130
Six Lessons from altMBA
skipperchong
27
3.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
For a Future-Friendly Web
brad_frost
175
9.4k
Rails Girls Zürich Keynote
gr2m
94
13k
Writing Fast Ruby
sferik
627
61k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
Transcript
オートエンコーダーによる異常検知 Abeta
画像の異常検知 • 異常検知=他の⼤多数のデータとは異なる特徴を持つデータを⾒つける。 正常 異常
オートエンコーダー Encoder Decoder • 正常画像で特徴を抽出、画像を復元するモデルを学習する。 モデルに異常画像を通し、復元できない差分で異常を検知する。 正常 異常
従来モデルの⽋点 Encoder Decoder • 局所的な異常が画像全体の再構成に影響を与える。異常箇所の同定が困難になる。 また、VAEは出⼒画像がぼやけることが知られている。 理想 現実
新⼿法 • 異常画像の異常な部分だけを再構成画像に近づけるようにする。 [arXiv:2002.03734]Iterative energy-based projection on a normal data
manifold for anomaly localization Encoder Decoder 異常箇所のみ 再構成画像に 置き換える ① ② ③ ④ ①〜③を繰り返した後 ⽐較して異常度を出⼒ ⽐較して異常箇所を特定 推論
難しい説明 正常画像の集合 ⼊⼒異常画像 𝒙𝟎 " 𝒙𝟎 VAE再構成画像 𝒙𝒕"𝟏 = 𝒙𝒕
− 𝜶 % 𝛁𝒙 𝑬 𝒙𝒕 ⊙ 𝒙𝒕 − 𝒇 𝒙𝒕 𝟐 再構成誤差 L1正則化 正常部分を⼊⼒画 像に保ちつつ再構 成画像に近づける 異常箇所のピク セルに重み付け " 𝒙𝟏 " 𝒙𝒕 𝒙𝟏 𝒙𝒕 正常箇所のピクセルは𝒙𝟎 と同じ値に保ちつつ異常 箇所のピクセルは再構成 画像に近づける 再構成画像は イテレーションで ほとんど変わらない 𝑬 𝒙𝒕 = 𝓛 𝒙𝒕 + 𝝀||𝒙𝒕 − 𝒙𝟎|| Pixel Space ぼやけるため正常画像の 集合からは少しずれる 異常箇所の ピクセル 正常箇所の ピクセル 正常箇所の ピクセル イテレーション
L1正則化の補⾜ 正常画像の集合 ⼊⼒異常画像 𝒙𝟎 " 𝒙𝟎 VAE再構成画像 𝒙𝒕"𝟏 = 𝒙𝒕
− 𝜶 % 𝛁𝒙 𝑬 𝒙𝒕 ⊙ 𝒙𝒕 − 𝒇 𝒙𝒕 𝟐 再構成誤差 L1正則化 正常部分を⼊⼒画 像に保ちつつ再構 成画像に近づける 異常箇所のピク セルに重み付け " 𝒙𝟏 " 𝒙𝒕 𝒙𝟏 𝒙𝒕 𝑬 𝒙𝒕 = 𝓛 𝒙𝒕 + 𝝀||𝒙𝒕 − 𝒙𝟎|| Pixel Space ぼやけるため正常画像の 集合からは少しずれる 異常箇所の ピクセル 正常箇所の ピクセル 正常箇所の ピクセル イテレーション MSEの場合
知⾒ • そもそもかなり学習させないとVAEで綺麗な再構成画像を作れない • 𝛼と𝜆とイテレーション回数のチューニングはかなり技巧的 • イテレーション数⼗回のオーダーで必要 • イテレーションによる再構成画像はほとんど変化がない(多分) 再構成の精度が低いから?
• 再構成誤差の計測は交差エントロピーよりMAEのほうがよい • “Reduce Failed to Synchronise”エラーが出るとカーネルの再起動が必要
参考 • 「 Iterative energy-based projection on a normal data
manifold for anomaly localization」, David Dehaene, Oriel Frigo, Sébastien Combrexelle, Pierre Eline, ICLR 2020 Conference Blind Submission • “ICLR2020の異常検知論⽂を実装してみた”, https://qiita.com/kogepan102/items/122b2862ad5a51180656 • “ICLR2020の異常検知論⽂の紹介”, https://www.slideshare.net/ssuser9eb780/iclr2020-20191123