Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
オートエンコーダーによる異常検知
Search
Masafumi Abeta
February 17, 2021
Programming
0
310
オートエンコーダーによる異常検知
2021年2月17日の社内勉強会で発表した資料です。
Masafumi Abeta
February 17, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
250
GPTモデルでキャラクター設定する際の課題
abeta
0
290
GPTをLINEで使えるようにして布教した
abeta
0
170
【Nishika】プリント基板の電子部品検出
abeta
0
300
初心者向けChatGPT入門
abeta
0
230
GPT Short Talk
abeta
0
120
拡散モデルについて少しだけ
abeta
0
57
動的計画モデル
abeta
0
150
物体追跡
abeta
0
290
Other Decks in Programming
See All in Programming
Gemini CLI のはじめ方
ttnyt8701
1
110
構造化・自動化・ガードレール - Vibe Coding実践記 -
tonegawa07
0
160
CIを整備してメンテナンスを生成AIに任せる
hazumirr
0
370
オホーツクでコミュニティを立ち上げた理由―地方出身プログラマの挑戦 / TechRAMEN 2025 Conference
lemonade_37
1
360
Vibe coding コードレビュー
kinopeee
0
340
SQLアンチパターン第2版 データベースプログラミングで陥りがちな失敗とその対策 / Intro to SQL Antipatterns 2nd
twada
PRO
35
10k
コーディングエージェント概観(2025/07)
itsuki_t88
0
460
中級グラフィックス入門~効率的なメッシュレット描画~
projectasura
3
2k
DMMを支える決済基盤の技術的負債にどう立ち向かうか / Addressing Technical Debt in Payment Infrastructure
yoshiyoshifujii
4
670
iOS開発スターターキットの作り方
akidon0000
0
230
#QiitaBash TDDで(自分の)開発がどう変わったか
ryosukedtomita
1
180
[Codecon - 2025] Como não odiar seus testes
camilacampos
0
100
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Building an army of robots
kneath
306
45k
Become a Pro
speakerdeck
PRO
29
5.4k
Making Projects Easy
brettharned
117
6.3k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
530
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Music & Morning Musume
bryan
46
6.7k
Scaling GitHub
holman
461
140k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
The Invisible Side of Design
smashingmag
301
51k
Transcript
オートエンコーダーによる異常検知 Abeta
画像の異常検知 • 異常検知=他の⼤多数のデータとは異なる特徴を持つデータを⾒つける。 正常 異常
オートエンコーダー Encoder Decoder • 正常画像で特徴を抽出、画像を復元するモデルを学習する。 モデルに異常画像を通し、復元できない差分で異常を検知する。 正常 異常
従来モデルの⽋点 Encoder Decoder • 局所的な異常が画像全体の再構成に影響を与える。異常箇所の同定が困難になる。 また、VAEは出⼒画像がぼやけることが知られている。 理想 現実
新⼿法 • 異常画像の異常な部分だけを再構成画像に近づけるようにする。 [arXiv:2002.03734]Iterative energy-based projection on a normal data
manifold for anomaly localization Encoder Decoder 異常箇所のみ 再構成画像に 置き換える ① ② ③ ④ ①〜③を繰り返した後 ⽐較して異常度を出⼒ ⽐較して異常箇所を特定 推論
難しい説明 正常画像の集合 ⼊⼒異常画像 𝒙𝟎 " 𝒙𝟎 VAE再構成画像 𝒙𝒕"𝟏 = 𝒙𝒕
− 𝜶 % 𝛁𝒙 𝑬 𝒙𝒕 ⊙ 𝒙𝒕 − 𝒇 𝒙𝒕 𝟐 再構成誤差 L1正則化 正常部分を⼊⼒画 像に保ちつつ再構 成画像に近づける 異常箇所のピク セルに重み付け " 𝒙𝟏 " 𝒙𝒕 𝒙𝟏 𝒙𝒕 正常箇所のピクセルは𝒙𝟎 と同じ値に保ちつつ異常 箇所のピクセルは再構成 画像に近づける 再構成画像は イテレーションで ほとんど変わらない 𝑬 𝒙𝒕 = 𝓛 𝒙𝒕 + 𝝀||𝒙𝒕 − 𝒙𝟎|| Pixel Space ぼやけるため正常画像の 集合からは少しずれる 異常箇所の ピクセル 正常箇所の ピクセル 正常箇所の ピクセル イテレーション
L1正則化の補⾜ 正常画像の集合 ⼊⼒異常画像 𝒙𝟎 " 𝒙𝟎 VAE再構成画像 𝒙𝒕"𝟏 = 𝒙𝒕
− 𝜶 % 𝛁𝒙 𝑬 𝒙𝒕 ⊙ 𝒙𝒕 − 𝒇 𝒙𝒕 𝟐 再構成誤差 L1正則化 正常部分を⼊⼒画 像に保ちつつ再構 成画像に近づける 異常箇所のピク セルに重み付け " 𝒙𝟏 " 𝒙𝒕 𝒙𝟏 𝒙𝒕 𝑬 𝒙𝒕 = 𝓛 𝒙𝒕 + 𝝀||𝒙𝒕 − 𝒙𝟎|| Pixel Space ぼやけるため正常画像の 集合からは少しずれる 異常箇所の ピクセル 正常箇所の ピクセル 正常箇所の ピクセル イテレーション MSEの場合
知⾒ • そもそもかなり学習させないとVAEで綺麗な再構成画像を作れない • 𝛼と𝜆とイテレーション回数のチューニングはかなり技巧的 • イテレーション数⼗回のオーダーで必要 • イテレーションによる再構成画像はほとんど変化がない(多分) 再構成の精度が低いから?
• 再構成誤差の計測は交差エントロピーよりMAEのほうがよい • “Reduce Failed to Synchronise”エラーが出るとカーネルの再起動が必要
参考 • 「 Iterative energy-based projection on a normal data
manifold for anomaly localization」, David Dehaene, Oriel Frigo, Sébastien Combrexelle, Pierre Eline, ICLR 2020 Conference Blind Submission • “ICLR2020の異常検知論⽂を実装してみた”, https://qiita.com/kogepan102/items/122b2862ad5a51180656 • “ICLR2020の異常検知論⽂の紹介”, https://www.slideshare.net/ssuser9eb780/iclr2020-20191123