$30 off During Our Annual Pro Sale. View Details »

chip technology, nanoliters and picoliters - miniaturization of (bio)analytical chemistry methods

chip technology, nanoliters and picoliters - miniaturization of (bio)analytical chemistry methods

... talk given at Lund, 2005

andreas manz

May 18, 2005
Tweet

More Decks by andreas manz

Other Decks in Science

Transcript

  1. Chip technology, nanoliters and
    picoliters – miniaturization of
    (bio)analytical chemistry
    methods
    Andreas Manz
    I S A S INSTITUTE FOR ANALYTICAL SCIENCES
    Dortmund and Berlin

    View Slide

  2. photo
    Berlin
    Dortmund
    currently 140 staff, 100 in research
    annual budget EUR 9M

    View Slide

  3. organization
    Prof.Dr.Andreas Manz Prof.Dr.Kay Niemax
    head
    miniaturization proteomics metabolomics spectroscopy materials
    PD Dr.Joachim Franzke Dr.Norbert Jakubow ski Dr.Jörg I. Baumbach PD Dr.Volker K. Deckert Dr.Roland Hergenröder
    head a.i. head head head head
    micro plasmas transcription profiling volatile metabolites GC-IMS nano raman synchrotron XRF
    (PD Dr.Joachim Franzke) Prof. Dr. Philip Day (Dr.Jörg I. Baumbach) (PD Dr.Volker K. Deckert) Alex von Bohlen
    microfluidic separations ICP-MS molecular imaging functional biotechnology diode laser AS femtosecond laser ablatio
    (Prof.Dr.Andreas Manz) (Dr.Norbert Jakubow ski) Prof. Dr. Andreas Schmid (Prof.Dr.Kay Niemax) (Prof.Dr.Kay Niemax)
    x-ray and neutron sources echelle spectrometers* IR ellipsometry*
    Prof.Dr.Eduardo Greaves Dr.Helmut Becker-Ross PD Dr.Norbert Esser
    * Berlin-Adlershof

    View Slide

  4. vision
    • identify and quantify all compounds in a
    mixture („...omics“)
    • ... as a function of time (monitoring)
    • ... as a function of space (imaging)

    View Slide

  5. vision
    time
    space
    information
    content
    1 times
    1 location
    1 compound
    1d
    2d
    3d
    continuously
    1/s
    1/min
    „...ome“
    complex mixture
    mixture

    View Slide

  6. time
    space
    information
    content proteomics
    glucose sensor
    most analytical
    methods
    NMR tomography

    View Slide

  7. time
    space
    vision

    View Slide

  8. View Slide

  9. View Slide

  10. View Slide

  11. How can we do it ?
    What will it cost ?
    What time does it take ?

    View Slide

  12. why miniaturize
    volume of 1µL 1nL 1pL
    (1mm)3 (100µm)3 (10µm)3
    600,000,000 600,000 600
    25 / cm2 2500 / cm2 250 ,000/ cm2
    17 min 10s 100ms
    1.5 /min / cm2 250 /s / cm2 2,500,000 /s / cm2
    # molecules
    (1nM solution)
    # volumes
    In array
    diffusion time
    # reactions
    (diffusion controlled)
    is a cube of

    View Slide

  13. What do we have now?
    [example 1]
    • Electrophoresis chips - Caliper,
    Agilent, Predicant, Hitachi,
    Shimadzu etc.
    • mainly used for DNA fragment
    sizing
    • protein separations

    View Slide

  14. 10 fold miniaturization
    100 x faster separation
    1000 x smaller volume
    10 x lower reagent consumption

    View Slide

  15. fluorescence [arb. units]
    time [s]
    0 40 80 120 160
    1 2
    3
    4
    5
    6
    cycle #
    7 8
    t 7 s
    synchr.
    fluorescence [arb. units]
    time [s]
    0 40 80 120 160
    1 2
    3
    4
    5
    6
    cycle #
    7 8
    t 7 s
    synchr.
    fluorescence [arb. units]
    time [s]
    0 40 80 120 160
    1 2
    3
    4
    5
    6
    cycle #
    7 8
    t 7 s
    synchr.
    electrophoresis
    FITC labeled amino acids
    D.J.Harrison, K.Flury, K.Seiler, Z.Fan, C.S.Effenhauser, A.Manz, Science 261, 895-897
    (1993)
    C.S.Effenhauser, A.Manz, H.M.Widmer, Anal. Chem. 65, 2637-2642 (1993)

    View Slide

  16. electrophoresis
    double stranded DNA (x 174 HaeIII digest)
    A.Manz, H.Becker, Transducers 97, Chicago, June 16-19, 1997, Digest
    of Technical Papers, (ISBN 0-7803-3829-4), 915-918 (1997)

    View Slide

  17. nano channels & single
    molecules
    80 x 80 nm channel bulk DNA
    (-DNA)
    L.C.Campbell, M.J.Wilkinson, A.Manz, P.Camilleri, C.J.Humphreys, Lab
    Chip 4, 225-229 (2004)

    View Slide

  18. Agilent 2100 Bioanalyzer
    electrophoresis

    View Slide

  19. Mass spec spraying
    needle, needle
    assembly & fittings
    Nano LC Column
    Enrichment column,
    capillaries, fittings, frits
    HV ESI
    contact
    RF tag
    chip based LC/MS by Agilent
    courtesy of Tom A.van de Goor, Agilent, Santa Clara CA

    View Slide

  20. What do we have now?
    [example 2]
    • Reactor chips - Upchurch, etc.
    • Mainly used for solvent
    gradients in chromatography
    • Chemical synthesis
    • Bioassays

    View Slide

  21. chemical reactor
    F.G.Bessoth, A.J.de Mello, A.Manz, Anal. Comm. 36, 213-215 (1999)

    View Slide

  22. View Slide

  23. Continuous flow method

    View Slide

  24. 0 ms
    6 ms
    chemical reactor

    View Slide

  25. Upchurch Scientific
    chemical reactor

    View Slide

  26. Inlet capillaries
    Syringes
    Rheodyne injection valve
    Injection loop
    outlet capillary
    Micromixer chip /
    PTFE interface
    chemical reactor

    View Slide

  27. N+
    H
    H
    R1
    R2
    Cl-
    H H
    O
    MeOH
    N+
    Cl-
    H2
    O
    N
    R3
    R4
    R2
    R1
    C
    R1
    N
    R2
    N
    R4
    R3
    H2
    O
    R1
    N
    R2
    N
    R4
    R3
    O
    R1/R2 = -CH2
    (CH2
    )3
    CH2
    -
    Piperidine hydrochloride
    + +
    Piperidinium cation
    +
    R3/R4 = -CH2
    (CH2
    )4
    CH2
    -
    Cyclohexyl isocyanide
    Nitrilium intermediate
    -Dialkylacetamide
    Formaldehyde
    N-Cyclohexyl-2-piperidin-1-yl-acetamide
    (1)
    (2) (3)
    (4)
    (5)
    (6)
    Multicomponent Chemistries: The Ugi Reaction
    0oC

    View Slide

  28. Simultaneous Observation of Reactants, Intermediates,
    Products and By-products
    20 mLmin-1
    50 nL injection loop
    Room temperature
    M.C.Mitchell, V.Spikmans, A.Manz, A.J.de Mello
    J.Chem.Soc., Perkin Trans.1, 2001, 514-518 (2001)
    educt
    intermediate
    side product
    main product
    intermediate

    View Slide

  29. horseradish peroxidase assay
    flow rate dependence of signal
    <11.5s
    <570ms
    50 ng/mL HRP

    View Slide

  30. horseradish peroxidase assay
    calibration curves

    View Slide

  31. Ubiquitin Native/A state
    Native state A state
    Methanol
    pD=2

    View Slide

  32. Set-up for NMR measurement
    Syringe pumps
    NMR
    Micromixer
    Detection coil
    (200mm i.d.)
    250mm i.d. 75mm i.d.

    View Slide

  33. Picture of detection coil
    Sweedler group, Univ. of Illinois
    Reservoir
    Capillary
    1cm

    View Slide

  34. NMR set-up
    Syringe pump
    3m
    Capillary
    NMR
    NMR
    Sweedler group, Univ. of Illinois

    View Slide

  35. 10 mL/min
    (24sec)
    40 mL/min
    (6sec)
    His68
    Tyr59
    N
    N
    N
    N
    A
    A
    A
    A
    M.Kakuta, D.A.Jayawickrama, A.M.Wolters, A.Manz, J.V.Sweedler,
    Anal.Chem. 75, 956-960 (2003)

    View Slide

  36. 1643 cm-1
    1661 cm-1
    1671cm-1
    wavenumber [cm-1]
    1600
    1620
    1640
    1660
    1680
    1700
    arbitrary units
    -2e-5
    0
    2e-5
    4e-5
    6e-5
    2nd derivative
    A
    Result (FT-IR)
    wavenumber [cm-1]
    1600
    1620
    1640
    1660
    1680
    1700
    arbitrary units
    -4e-5
    -2e-5
    0
    2e-5
    4e-5
    6e-5
    8e-5
    1e-4
    absorbance [AU]
    0.000
    0.005
    0.010
    0.015
    0.020
    0.025
    ubiquitin (native)
    ubiquitin (mixed)
    absorbance
    2nd derivative
    M.Kakuta, P.Hinsmann, A.Manz, B.Lendl, Lab Chip 3, 82-85 (2003)
    N
    N

    View Slide

  37. Post-column reactor: µLC-Chip-MS Set-up
    25cm x 100µm
    µLC column
    Injector
    Waste
    LC pumping
    system
    35cm x 50µm
    TOF MS
    Electrospray
    Micromixer chip
    Syringe pump
    TMPP+ / TEA
    CMPI
    UV detector

    View Slide

  38. µLC-Chip-MS Set-up
    Electrospray needle
    High voltage
    Nebulising gas

    View Slide

  39. Br
    -
    (MeO)3
    Ph
    P
    +
    Ph(OMe)3
    (MeO)3
    Ph
    N
    H
    NH2
    O
    R
    H
    O
    +
    Br
    -
    (MeO)3
    Ph
    P
    +
    Ph(OMe)3
    (MeO)3
    Ph
    N
    H
    N
    O
    H
    R
    Acetic acid, 30 mins,
    sonicate
    Aldehyde
    4-Hydrazino-4-oxobutyl-TMPP+Br-
    Hydrazino derivative of aldehyde
    Reaction of Aldehydes (and ketones) with 4-hydrazino-4-oxobutyl-TMPP

    View Slide

  40. Gradient µLC-chip-MS of Ketones/Aldehydes
    Column 10cm long 200µm i.d. 5µm Hypersil C18
    Ultra High Purity Elite
    Separation 5 minute gradient from 0 to 90% acetonitrile in water, containing 0.1% formic acid
    Injection 50nL
    Reagents all 1.0 mM at 1µL/min
    MS Micromass Q-Tof II
    Ketones/Aldehydes Products
    Cyclohexanone
    Valeraldehyde
    Cyclohexane carboxaldehyde
    Heptaldehyde
    V.Spikmans, S.J.Lane, B.Leavens, A.Manz, N.W.Smith, Rapid Commun.
    Mass Spectrom. 16, 1377-1388 (2002)

    View Slide

  41. Gradient µLC-chip-MS of Amines – isotope labeling
    analysis
    Methylheptylamine
    Methyloctylamine
    Methyldecylamine
    Methylhexylamine
    Products
    Accurate Mass
    Difference
    Isotopes: 2.012
    Only characteristic pattern is necessary, not molecular weight

    View Slide

  42. Sequential DNA hybridization
    • Inject small volume plugs of probe DNA oligomers
    • Mix within ms with target DNA
    • Observe hybridization reaction as the plug moves downstreams

    View Slide

  43. DNA hybridisation assay
    Intercalating dye alone low
    DNA oligomers low
    Oligomer dimers medium
    dsDNA high

    View Slide

  44. Influence of DNA Sequence on
    Fluorescence Levels
    Order:
    matching, 1 mismatch, 2
    mismatches, 5 mismatches
    Order:
    matching, 1
    mismatch, 2
    mismatches
    Sequence-dependent responses from two different experiments.

    View Slide

  45. Quick Decision: Exploiting
    Photobleaching Effects
    M.Heule, A.Manz, Lab Chip 4, 506-511 (2004)

    View Slide

  46. microfluidic DNA assays
    • 1 second to decision
    • no complicated surface chemistry
    • sensitivity 100-200nM
    • could be competing with DNA
    arrays

    View Slide

  47. What would I address?
    [example ]
    protein separations
    by free-flow electrophoresis
    … isoelectric focusing

    View Slide

  48. free-flow electrophoresis -
    proteins
    + -

    View Slide

  49. IEF chip
    • 36 x 20 um inlet channels
    • 72 x 20 um outlet channels
    • each side 108 x 4 um channels
    • separation bed 12.2 x 4.1 mm
    – 15,552 posts
    – 30 x 30 um

    View Slide

  50. free-flow electrophoresis

    View Slide

  51. very fast
    electrophoresis
    C.-X.Zhang, A.Manz, Anal. Chem. 75, 5759-5766 (2003)

    View Slide

  52. fluorescence [arb. units]
    time [s]
    0 40 80 120 160
    1 2
    3
    4
    5
    6
    cycle #
    7 8
    t 7 s
    synchr.
    fluorescence [arb. units]
    time [s]
    0 40 80 120 160
    1 2
    3
    4
    5
    6
    cycle #
    7 8
    t 7 s
    synchr.
    fluorescence [arb. units]
    time [s]
    0 40 80 120 160
    1 2
    3
    4
    5
    6
    cycle #
    7 8
    t 7 s
    synchr.
    comparison
    FFE
    CE

    View Slide

  53. IEF FFE
    Isoelectric focusing using free-flow electrophoresis

    View Slide

  54. IEF proof of principle
    12 mm
    0 mm
    4 mm
    4 mm = 500 ms
    angiotensin I, 1.75 kV, 10 uL/min
    Y.Xu, C.X.Zhang, A.Manz, Lab Chip 3, 224-227 (2003)

    View Slide

  55. IEF - proteins
    angiotensin I, 1.75 kV, 10 uL/min
    400ms

    View Slide

  56. IEF - IGF-1
    10μm
    4mm

    View Slide

  57. IEF chip
    • volume 240 nL plus wells
    • at 10 uL/min
    – 1.4 seconds (time to information)
    • preconcentration 100 - 400x

    View Slide

  58. View Slide

  59. Chip technology, miniaturization of
    (bio)analytical chemistry methods
    Andreas Manz
    I S A S INSTITUTE FOR ANALYTICAL SCIENCES
    Dortmund and Berlin

    View Slide

  60. Andreas Manz
    I S A S INSTITUTE FOR ANALYTICAL SCIENCES
    Dortmund and Berlin
    … fun stuff from the
    Manz’ new lab

    View Slide

  61. T.Vilkner, A.Shivji, A.Manz, Lab Chip 5, 140-145 (2005)

    View Slide

  62. dry powder dispenser
    T.Vilkner, A.Shivji, A.Manz,
    Lab Chip 5, 140-145 (2005)
    principle: fluidized bed

    View Slide

  63. dry powder dispenser
    T.Vilkner, A.Shivji, A.Manz,
    Lab Chip 5, 140-145 (2005)
    principle: fluidized bed

    View Slide

  64. dry powder dispenser
    T.Vilkner, A.Shivji, A.Manz,
    Lab Chip 5, 140-145 (2005)
    reproducible injections
    of 1 – 50 mg of dry
    powder (non-cohesive)

    View Slide

  65. MALD for bacterial spore disruption
    O.Hofmann,
    K.Murray,
    A.S.Wilkinson,
    T.Cox, A.Manz,
    Lab Chip 5, in
    press 2005
    Matrix
    Assisted
    Laser
    Desorption

    View Slide

  66. MALD for bacterial spore disruption
    O.Hofmann, K.Murray, A.S.Wilkinson, T.Cox, A.Manz, Lab Chip 5,
    in press 2005
    6mW nitrogen laser
    337nm
    4ns pulse width
    75kW peak power

    View Slide

  67. MALD for bacterial spore disruption
    O.Hofmann, K.Murray,
    A.S.Wilkinson, T.Cox, A.Manz, Lab
    Chip 5, in press 2005
    before
    Bacillus globigii spores
    3-hydroxypicolinic acid
    after

    View Slide

  68. Np XRF chip
    E.Greaves, A.Manz, Lab Chip 5, in press 2005
    Am
    241
    95
    Np
    237
    93
    458 years
    α emitter
    900 nCi

    View Slide

  69. Np XRF chip
    E.Greaves, A.Manz, Lab Chip 5, in press 2005 h

    View Slide

  70. Np XRF chip
    E.Greaves, A.Manz, Lab Chip 5, in press 2005
    Sn
    Zn
    Ni

    View Slide

  71. Vac. gauge
    Pump
    HV supply
    ADC
    HV Amp
    Pre
    HP
    Ge
    PC
    CPU
    S100
    HV
    Leak
    NIM bin
    A.-
    B.-
    X-ray chip
    E.Greaves, A.Manz, Lab Chip 5, in press 2005

    View Slide

  72. X-ray chip
    E.Greaves, A.Manz, Lab
    Chip 5, in press 2005
    0.1-10 mtorr
    200-600 nA
    4 mW

    View Slide

  73. cyclic separations

    View Slide

  74. View Slide

  75. View Slide

  76. chromatography like

    View Slide

  77. injection
    detection
    speed measurement

    View Slide

  78. View Slide

  79. injection
    detection
    speed measurement

    View Slide

  80. filling the sample loop…
    here is the chromatographer !
    and, injectioooon !!!
    … some irreversible processes …

    View Slide

  81. View Slide

  82. View Slide

  83. View Slide

  84. View Slide

  85. linear 1d separations
    injection detection

    View Slide

  86. linear 1d separations
    injection of small sample volume
    single point detection
    resolution depends on
    pressure applied, or
    voltage applied

    View Slide

  87. linear 1d separations
    today’s liquid chromatography is
    at upper pressure limit
    today’s electrophoresis is at
    voltage limit

    View Slide

  88. how to overcome?
    somehow keeping compound of
    interest in same position

    View Slide

  89. 1937 A.Tiselius
    flow-counterbalanced electrophoresis
    Trans. Fraday Soc. 1937, 33, 524-531
    1990 S.C.Lee et al
    EOF-counterbalanced CE
    1994 C.T.Culbertson et al
    flow-counterbalanced CE

    View Slide

  90. how to overcome?
    mass spectrometry: time-of-flight
    MS vs. cyclotron MS
    particle accelerators: linear
    accelerator vs. synchrotron

    View Slide

  91. cyclic separation is not new…
    1962
    direct pumping recycling LC:
    Porath, J., Bennich, H., Arch. Biochem.
    Biophys.1962, Suppl.1 , 152–156.

    View Slide

  92. 1962
    direct pumping recycling LC:
    column
    inj det
    p
    valve

    View Slide

  93. cyclic separation is not new…
    1971
    alternate pumping recycling LC:
    Biesenberger, J. A., Tan, M., Duvdevani,
    I., Maurer, T., J. Polym.Sci.B
    Polym.Lett.1971, 9 , 353–357.

    View Slide

  94. 1971
    alternate pumping recycling LC:
    column
    inj det
    p valve
    column

    View Slide

  95. cyclic separation is not new…
    1993
    synchronized cyclic CE:
    Burggraf, N., Manz, A., Effenhauser, C.
    S., Verpoorte, E., De Rooij, N. F.,
    Widmer, H. M., HRC-J.High
    Resolut.Chromatogr.1993, 16 , 594–596.

    View Slide

  96. 1993
    synchronized cyclic CE:
    +
    -

    View Slide

  97. 1993
    synchronized cyclic CE:
    +
    -

    View Slide

  98. 1993
    synchronized cyclic CE:
    +
    -

    View Slide

  99. cyclic separation is not new…
    2001
    electrophoretron:
    Choi, J. G., Kim, M., Dadoo, R., Zare, R.
    N., J.Chromatogr.A, 2001, 924 , 53–58.

    View Slide

  100. 2001
    electrophoretron:
    + -

    View Slide

  101. advantages
    plate number N and resolution Rs
    are increasing over time
    same driving force is used
    multiple times

    View Slide

  102. problems
    peak capacity is going towards 0
    many sample components are
    eliminated
    pump or valve volume decreases N
    time

    View Slide

  103. vA
    vB
    detection
    window
    separation channel
    vsolution
    • in principle infinitely long separation column
    • small driving force: determined by circle circumference
    • resolution proportional to the square root of time
    Fourier transform chromatography

    View Slide

  104. issues
    constant cross-section around
    cycle (pump?)
    high flow velocity for small
    channel diameters (pump?)
    overtaking of sample components
    (detection?)
    panic

    View Slide

  105. overtaking of sample components
    (detection?)

    View Slide

  106. Shah Convolution - FT- Detection
    H. J. Crabtree, M. U. Kopp and A. Manz, Anal. Chem., 1999, 71,

    View Slide

  107. View Slide

  108. wavelet transform
    J.C.T.Eijkel, Y.C.Kwok, A.Manz, Lab Chip, 2001, 1, 122.

    View Slide

  109. 7 Hz
    14 Hz
    wavelet transform

    View Slide

  110. vA
    vB
    detection
    window
    separation channel
    vsolution
    Fourier transform chromatography

    View Slide

  111. constant cross-section around
    cycle (pump?)

    View Slide

  112. pumping for cyclic LC separation
    electrohydrodynamic
    magnetohydrodynamic
    AC electroosmotic
    shear
    panic

    View Slide

  113. magnetohydrodynamic
    Eijkel, J. C. T., Dalton, C., Hayden, C. J., Burt, J. P. H.,
    Manz, A., Sens.Actuators B 2003, 92 , 215–221.

    View Slide

  114. Debesset, S., Hayden, C. J., Dalton, C., Eijkel, J. C. T., Manz,
    A., Lab Chip 2004, 4 ,396-400.
    AC electroosmotic

    View Slide

  115. shear flow pumping
    G. Desmet and G. V. Baron, J. Chromatogr. A, 1999, 855(1), 57.

    View Slide

  116. shear flow pumping
    movement of plate v
    fluid velocity v/2
    movement of plate = 0
    G. Desmet and G. V. Baron, J. Chromatogr. A, 1999, 855(1), 57.

    View Slide

  117. shear flow pumping
    movement of plate v
    fluid velocity v/2
    movement of plate = 0

    View Slide

  118. shear flow pumping
    movement of plate v
    fluid velocity v/2
    movement of plate = 0

    View Slide

  119. shear flow pumping
    non-retained v/2
    retained = 0
    stationary phase

    View Slide

  120. shear flow pumping
    non-retained v/2
    retained = 0

    View Slide

  121. shear flow pumping
    non-retained v/2
    retained = 0

    View Slide

  122. shear flow pumping
    retained v
    non-retained v/2
    stationary phase

    View Slide

  123. shear flow pumping
    retained v
    non-retained v/2

    View Slide

  124. shear flow pumping
    retained v
    non-retained v/2

    View Slide

  125. shear flow pumping
    very high speeds possible
    nm gaps should lead to high N
    main problem:
    the end of the plate is the end of the
    pumping (no more than N=10,000 shown so far)

    View Slide

  126. chip design
    channel width 2mm, depth 15um
    channel circumference 62.8mm

    View Slide

  127. View Slide

  128. View Slide

  129. View Slide

  130. Fourier transform chromatography
    shear flow pumping
    Rotation
    stage
    Loading
    direction
    Chips
    Stationary
    clamp
    Injection
    pump

    View Slide

  131. stationary phase
    Supershere 60 RP-8 particles
    tri-methylopropane-trimethacrylate

    View Slide

  132. fully retained sample, raw data
    u = 1.5mm/s (Péclet no = 14)
    mobile phase methanol/water 1:1
    sample coumarin dyes

    View Slide

  133. fully retained sample, FT time scale

    View Slide

  134. fully retained sample, FT
    chromatographic
    window
    panic

    View Slide

  135. non-retained
    fully retained
    panic

    View Slide

  136. non-retained
    fully retained
    panic

    View Slide

  137. non-retained
    fully retained
    panic

    View Slide

  138. non-retained
    fully retained, or
    overtone
    retained
    …a separation…?

    View Slide

  139. View Slide

  140. conclusions
    • cyclic separation can be done without
    sample loss
    • plate numbers and resolution increase with
    time
    • shear flow pumping most promising
    • deconvolution of detection signal by Fourier
    or wavelet transform

    View Slide

  141. open questions
    • which signal deconvolution is best?
    • what dimensions are optimal for
    performance (theory)?
    • is there a simultaneous use for two
    independent stationary phases?
    • how about gradient elution?

    View Slide

  142. Acknowledgment
    Oliver Hofmann
    Torsten Vilkner
    Xin Yang
    Eduardo Greaves, Prof.
    Jan Eijkel
    Sebastien Debesset
    Dirk Janasek
    Gareth Jenkins
    Joachim Franzke
    Qinetiq, UK
    Pfizer, UK
    Smiths Detection, UK
    Hitachi Ltd, Japan
    Universidad Simon Bolivar,
    Caracas, Venezuela
    Mercator professorship,
    Germany

    View Slide

  143. any questions?

    View Slide