Upgrade to Pro — share decks privately, control downloads, hide ads and more …

chip technology, nanoliters and picoliters - miniaturization of (bio)analytical chemistry methods

chip technology, nanoliters and picoliters - miniaturization of (bio)analytical chemistry methods

... talk given at Lund, 2005

andreas manz

May 18, 2005
Tweet

More Decks by andreas manz

Other Decks in Science

Transcript

  1. Chip technology, nanoliters and picoliters – miniaturization of (bio)analytical chemistry

    methods Andreas Manz I S A S INSTITUTE FOR ANALYTICAL SCIENCES Dortmund and Berlin
  2. organization Prof.Dr.Andreas Manz Prof.Dr.Kay Niemax head miniaturization proteomics metabolomics spectroscopy

    materials PD Dr.Joachim Franzke Dr.Norbert Jakubow ski Dr.Jörg I. Baumbach PD Dr.Volker K. Deckert Dr.Roland Hergenröder head a.i. head head head head micro plasmas transcription profiling volatile metabolites GC-IMS nano raman synchrotron XRF (PD Dr.Joachim Franzke) Prof. Dr. Philip Day (Dr.Jörg I. Baumbach) (PD Dr.Volker K. Deckert) Alex von Bohlen microfluidic separations ICP-MS molecular imaging functional biotechnology diode laser AS femtosecond laser ablatio (Prof.Dr.Andreas Manz) (Dr.Norbert Jakubow ski) Prof. Dr. Andreas Schmid (Prof.Dr.Kay Niemax) (Prof.Dr.Kay Niemax) x-ray and neutron sources echelle spectrometers* IR ellipsometry* Prof.Dr.Eduardo Greaves Dr.Helmut Becker-Ross PD Dr.Norbert Esser * Berlin-Adlershof
  3. vision • identify and quantify all compounds in a mixture

    („...omics“) • ... as a function of time (monitoring) • ... as a function of space (imaging)
  4. vision time space information content 1 times 1 location 1

    compound 1d 2d 3d continuously 1/s 1/min „...ome“ complex mixture mixture
  5. How can we do it ? What will it cost

    ? What time does it take ?
  6. why miniaturize volume of 1µL 1nL 1pL (1mm)3 (100µm)3 (10µm)3

    600,000,000 600,000 600 25 / cm2 2500 / cm2 250 ,000/ cm2 17 min 10s 100ms 1.5 /min / cm2 250 /s / cm2 2,500,000 /s / cm2 # molecules (1nM solution) # volumes In array diffusion time # reactions (diffusion controlled) is a cube of
  7. What do we have now? [example 1] • Electrophoresis chips

    - Caliper, Agilent, Predicant, Hitachi, Shimadzu etc. • mainly used for DNA fragment sizing • protein separations
  8. fluorescence [arb. units] time [s] 0 40 80 120 160

    1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. electrophoresis FITC labeled amino acids D.J.Harrison, K.Flury, K.Seiler, Z.Fan, C.S.Effenhauser, A.Manz, Science 261, 895-897 (1993) C.S.Effenhauser, A.Manz, H.M.Widmer, Anal. Chem. 65, 2637-2642 (1993)
  9. electrophoresis double stranded DNA (x 174 HaeIII digest) A.Manz, H.Becker,

    Transducers 97, Chicago, June 16-19, 1997, Digest of Technical Papers, (ISBN 0-7803-3829-4), 915-918 (1997)
  10. nano channels & single molecules 80 x 80 nm channel

    bulk DNA (-DNA) L.C.Campbell, M.J.Wilkinson, A.Manz, P.Camilleri, C.J.Humphreys, Lab Chip 4, 225-229 (2004)
  11. Mass spec spraying needle, needle assembly & fittings Nano LC

    Column Enrichment column, capillaries, fittings, frits HV ESI contact RF tag chip based LC/MS by Agilent courtesy of Tom A.van de Goor, Agilent, Santa Clara CA
  12. What do we have now? [example 2] • Reactor chips

    - Upchurch, etc. • Mainly used for solvent gradients in chromatography • Chemical synthesis • Bioassays
  13. N+ H H R1 R2 Cl- H H O MeOH

    N+ Cl- H2 O N R3 R4 R2 R1 C R1 N R2 N R4 R3 H2 O R1 N R2 N R4 R3 O R1/R2 = -CH2 (CH2 )3 CH2 - Piperidine hydrochloride + + Piperidinium cation + R3/R4 = -CH2 (CH2 )4 CH2 - Cyclohexyl isocyanide Nitrilium intermediate -Dialkylacetamide Formaldehyde N-Cyclohexyl-2-piperidin-1-yl-acetamide (1) (2) (3) (4) (5) (6) Multicomponent Chemistries: The Ugi Reaction 0oC
  14. Simultaneous Observation of Reactants, Intermediates, Products and By-products 20 mLmin-1

    50 nL injection loop Room temperature M.C.Mitchell, V.Spikmans, A.Manz, A.J.de Mello J.Chem.Soc., Perkin Trans.1, 2001, 514-518 (2001) educt intermediate side product main product intermediate
  15. 10 mL/min (24sec) 40 mL/min (6sec) His68 Tyr59 N N

    N N A A A A M.Kakuta, D.A.Jayawickrama, A.M.Wolters, A.Manz, J.V.Sweedler, Anal.Chem. 75, 956-960 (2003)
  16. 1643 cm-1 1661 cm-1 1671cm-1 wavenumber [cm-1] 1600 1620 1640

    1660 1680 1700 arbitrary units -2e-5 0 2e-5 4e-5 6e-5 2nd derivative A Result (FT-IR) wavenumber [cm-1] 1600 1620 1640 1660 1680 1700 arbitrary units -4e-5 -2e-5 0 2e-5 4e-5 6e-5 8e-5 1e-4 absorbance [AU] 0.000 0.005 0.010 0.015 0.020 0.025 ubiquitin (native) ubiquitin (mixed) absorbance 2nd derivative M.Kakuta, P.Hinsmann, A.Manz, B.Lendl, Lab Chip 3, 82-85 (2003) N N
  17. Post-column reactor: µLC-Chip-MS Set-up 25cm x 100µm µLC column Injector

    Waste LC pumping system 35cm x 50µm TOF MS Electrospray Micromixer chip Syringe pump TMPP+ / TEA CMPI UV detector
  18. Br - (MeO)3 Ph P + Ph(OMe)3 (MeO)3 Ph N

    H NH2 O R H O + Br - (MeO)3 Ph P + Ph(OMe)3 (MeO)3 Ph N H N O H R Acetic acid, 30 mins, sonicate Aldehyde 4-Hydrazino-4-oxobutyl-TMPP+Br- Hydrazino derivative of aldehyde Reaction of Aldehydes (and ketones) with 4-hydrazino-4-oxobutyl-TMPP
  19. Gradient µLC-chip-MS of Ketones/Aldehydes Column 10cm long 200µm i.d. 5µm

    Hypersil C18 Ultra High Purity Elite Separation 5 minute gradient from 0 to 90% acetonitrile in water, containing 0.1% formic acid Injection 50nL Reagents all 1.0 mM at 1µL/min MS Micromass Q-Tof II Ketones/Aldehydes Products Cyclohexanone Valeraldehyde Cyclohexane carboxaldehyde Heptaldehyde V.Spikmans, S.J.Lane, B.Leavens, A.Manz, N.W.Smith, Rapid Commun. Mass Spectrom. 16, 1377-1388 (2002)
  20. Gradient µLC-chip-MS of Amines – isotope labeling analysis Methylheptylamine Methyloctylamine

    Methyldecylamine Methylhexylamine Products Accurate Mass Difference Isotopes: 2.012 Only characteristic pattern is necessary, not molecular weight
  21. Sequential DNA hybridization • Inject small volume plugs of probe

    DNA oligomers • Mix within ms with target DNA • Observe hybridization reaction as the plug moves downstreams
  22. Influence of DNA Sequence on Fluorescence Levels Order: matching, 1

    mismatch, 2 mismatches, 5 mismatches Order: matching, 1 mismatch, 2 mismatches Sequence-dependent responses from two different experiments.
  23. microfluidic DNA assays • 1 second to decision • no

    complicated surface chemistry • sensitivity 100-200nM • could be competing with DNA arrays
  24. IEF chip • 36 x 20 um inlet channels •

    72 x 20 um outlet channels • each side 108 x 4 um channels • separation bed 12.2 x 4.1 mm – 15,552 posts – 30 x 30 um
  25. fluorescence [arb. units] time [s] 0 40 80 120 160

    1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. comparison FFE CE
  26. IEF proof of principle 12 mm 0 mm 4 mm

    4 mm = 500 ms angiotensin I, 1.75 kV, 10 uL/min Y.Xu, C.X.Zhang, A.Manz, Lab Chip 3, 224-227 (2003)
  27. IEF chip • volume 240 nL plus wells • at

    10 uL/min – 1.4 seconds (time to information) • preconcentration 100 - 400x
  28. Chip technology, miniaturization of (bio)analytical chemistry methods Andreas Manz I

    S A S INSTITUTE FOR ANALYTICAL SCIENCES Dortmund and Berlin
  29. Andreas Manz I S A S INSTITUTE FOR ANALYTICAL SCIENCES

    Dortmund and Berlin … fun stuff from the Manz’ new lab
  30. dry powder dispenser T.Vilkner, A.Shivji, A.Manz, Lab Chip 5, 140-145

    (2005) reproducible injections of 1 – 50 mg of dry powder (non-cohesive)
  31. MALD for bacterial spore disruption O.Hofmann, K.Murray, A.S.Wilkinson, T.Cox, A.Manz,

    Lab Chip 5, in press 2005 Matrix Assisted Laser Desorption
  32. MALD for bacterial spore disruption O.Hofmann, K.Murray, A.S.Wilkinson, T.Cox, A.Manz,

    Lab Chip 5, in press 2005 6mW nitrogen laser 337nm 4ns pulse width 75kW peak power
  33. MALD for bacterial spore disruption O.Hofmann, K.Murray, A.S.Wilkinson, T.Cox, A.Manz,

    Lab Chip 5, in press 2005 before Bacillus globigii spores 3-hydroxypicolinic acid after
  34. Np XRF chip E.Greaves, A.Manz, Lab Chip 5, in press

    2005 Am 241 95 Np 237 93 458 years α emitter 900 nCi
  35. Vac. gauge Pump HV supply ADC HV Amp Pre HP

    Ge PC CPU S100 HV Leak NIM bin A.- B.- X-ray chip E.Greaves, A.Manz, Lab Chip 5, in press 2005
  36. filling the sample loop… here is the chromatographer ! and,

    injectioooon !!! … some irreversible processes …
  37. linear 1d separations injection of small sample volume single point

    detection resolution depends on pressure applied, or voltage applied
  38. linear 1d separations today’s liquid chromatography is at upper pressure

    limit today’s electrophoresis is at voltage limit
  39. 1937 A.Tiselius flow-counterbalanced electrophoresis Trans. Fraday Soc. 1937, 33, 524-531

    1990 S.C.Lee et al EOF-counterbalanced CE 1994 C.T.Culbertson et al flow-counterbalanced CE
  40. how to overcome? mass spectrometry: time-of-flight MS vs. cyclotron MS

    particle accelerators: linear accelerator vs. synchrotron
  41. cyclic separation is not new… 1962 direct pumping recycling LC:

    Porath, J., Bennich, H., Arch. Biochem. Biophys.1962, Suppl.1 , 152–156.
  42. cyclic separation is not new… 1971 alternate pumping recycling LC:

    Biesenberger, J. A., Tan, M., Duvdevani, I., Maurer, T., J. Polym.Sci.B Polym.Lett.1971, 9 , 353–357.
  43. cyclic separation is not new… 1993 synchronized cyclic CE: Burggraf,

    N., Manz, A., Effenhauser, C. S., Verpoorte, E., De Rooij, N. F., Widmer, H. M., HRC-J.High Resolut.Chromatogr.1993, 16 , 594–596.
  44. cyclic separation is not new… 2001 electrophoretron: Choi, J. G.,

    Kim, M., Dadoo, R., Zare, R. N., J.Chromatogr.A, 2001, 924 , 53–58.
  45. advantages plate number N and resolution Rs are increasing over

    time same driving force is used multiple times
  46. problems peak capacity is going towards 0 many sample components

    are eliminated pump or valve volume decreases N time
  47. vA vB detection window separation channel vsolution • in principle

    infinitely long separation column • small driving force: determined by circle circumference • resolution proportional to the square root of time Fourier transform chromatography
  48. issues constant cross-section around cycle (pump?) high flow velocity for

    small channel diameters (pump?) overtaking of sample components (detection?) panic
  49. Shah Convolution - FT- Detection H. J. Crabtree, M. U.

    Kopp and A. Manz, Anal. Chem., 1999, 71,
  50. magnetohydrodynamic Eijkel, J. C. T., Dalton, C., Hayden, C. J.,

    Burt, J. P. H., Manz, A., Sens.Actuators B 2003, 92 , 215–221.
  51. Debesset, S., Hayden, C. J., Dalton, C., Eijkel, J. C.

    T., Manz, A., Lab Chip 2004, 4 ,396-400. AC electroosmotic
  52. shear flow pumping G. Desmet and G. V. Baron, J.

    Chromatogr. A, 1999, 855(1), 57.
  53. shear flow pumping movement of plate v fluid velocity v/2

    movement of plate = 0 G. Desmet and G. V. Baron, J. Chromatogr. A, 1999, 855(1), 57.
  54. shear flow pumping very high speeds possible nm gaps should

    lead to high N main problem: the end of the plate is the end of the pumping (no more than N=10,000 shown so far)
  55. fully retained sample, raw data u = 1.5mm/s (Péclet no

    = 14) mobile phase methanol/water 1:1 sample coumarin dyes
  56. conclusions • cyclic separation can be done without sample loss

    • plate numbers and resolution increase with time • shear flow pumping most promising • deconvolution of detection signal by Fourier or wavelet transform
  57. open questions • which signal deconvolution is best? • what

    dimensions are optimal for performance (theory)? • is there a simultaneous use for two independent stationary phases? • how about gradient elution?
  58. Acknowledgment Oliver Hofmann Torsten Vilkner Xin Yang Eduardo Greaves, Prof.

    Jan Eijkel Sebastien Debesset Dirk Janasek Gareth Jenkins Joachim Franzke Qinetiq, UK Pfizer, UK Smiths Detection, UK Hitachi Ltd, Japan Universidad Simon Bolivar, Caracas, Venezuela Mercator professorship, Germany