chip technology, nanoliters and picoliters - miniaturization of (bio)analytical chemistry methods

chip technology, nanoliters and picoliters - miniaturization of (bio)analytical chemistry methods

... talk given at Lund, 2005

3014362bc816c0e34f9bb270d226e31c?s=128

andreas manz

May 18, 2005
Tweet

Transcript

  1. Chip technology, nanoliters and picoliters – miniaturization of (bio)analytical chemistry

    methods Andreas Manz I S A S INSTITUTE FOR ANALYTICAL SCIENCES Dortmund and Berlin
  2. photo Berlin Dortmund currently 140 staff, 100 in research annual

    budget EUR 9M
  3. organization Prof.Dr.Andreas Manz Prof.Dr.Kay Niemax head miniaturization proteomics metabolomics spectroscopy

    materials PD Dr.Joachim Franzke Dr.Norbert Jakubow ski Dr.Jörg I. Baumbach PD Dr.Volker K. Deckert Dr.Roland Hergenröder head a.i. head head head head micro plasmas transcription profiling volatile metabolites GC-IMS nano raman synchrotron XRF (PD Dr.Joachim Franzke) Prof. Dr. Philip Day (Dr.Jörg I. Baumbach) (PD Dr.Volker K. Deckert) Alex von Bohlen microfluidic separations ICP-MS molecular imaging functional biotechnology diode laser AS femtosecond laser ablatio (Prof.Dr.Andreas Manz) (Dr.Norbert Jakubow ski) Prof. Dr. Andreas Schmid (Prof.Dr.Kay Niemax) (Prof.Dr.Kay Niemax) x-ray and neutron sources echelle spectrometers* IR ellipsometry* Prof.Dr.Eduardo Greaves Dr.Helmut Becker-Ross PD Dr.Norbert Esser * Berlin-Adlershof
  4. vision • identify and quantify all compounds in a mixture

    („...omics“) • ... as a function of time (monitoring) • ... as a function of space (imaging)
  5. vision time space information content 1 times 1 location 1

    compound 1d 2d 3d continuously 1/s 1/min „...ome“ complex mixture mixture
  6. time space information content proteomics glucose sensor most analytical methods

    NMR tomography
  7. time space vision

  8. None
  9. None
  10. None
  11. How can we do it ? What will it cost

    ? What time does it take ?
  12. why miniaturize volume of 1µL 1nL 1pL (1mm)3 (100µm)3 (10µm)3

    600,000,000 600,000 600 25 / cm2 2500 / cm2 250 ,000/ cm2 17 min 10s 100ms 1.5 /min / cm2 250 /s / cm2 2,500,000 /s / cm2 # molecules (1nM solution) # volumes In array diffusion time # reactions (diffusion controlled) is a cube of
  13. What do we have now? [example 1] • Electrophoresis chips

    - Caliper, Agilent, Predicant, Hitachi, Shimadzu etc. • mainly used for DNA fragment sizing • protein separations
  14. 10 fold miniaturization 100 x faster separation 1000 x smaller

    volume 10 x lower reagent consumption
  15. fluorescence [arb. units] time [s] 0 40 80 120 160

    1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. electrophoresis FITC labeled amino acids D.J.Harrison, K.Flury, K.Seiler, Z.Fan, C.S.Effenhauser, A.Manz, Science 261, 895-897 (1993) C.S.Effenhauser, A.Manz, H.M.Widmer, Anal. Chem. 65, 2637-2642 (1993)
  16. electrophoresis double stranded DNA (x 174 HaeIII digest) A.Manz, H.Becker,

    Transducers 97, Chicago, June 16-19, 1997, Digest of Technical Papers, (ISBN 0-7803-3829-4), 915-918 (1997)
  17. nano channels & single molecules 80 x 80 nm channel

    bulk DNA (-DNA) L.C.Campbell, M.J.Wilkinson, A.Manz, P.Camilleri, C.J.Humphreys, Lab Chip 4, 225-229 (2004)
  18. Agilent 2100 Bioanalyzer electrophoresis

  19. Mass spec spraying needle, needle assembly & fittings Nano LC

    Column Enrichment column, capillaries, fittings, frits HV ESI contact RF tag chip based LC/MS by Agilent courtesy of Tom A.van de Goor, Agilent, Santa Clara CA
  20. What do we have now? [example 2] • Reactor chips

    - Upchurch, etc. • Mainly used for solvent gradients in chromatography • Chemical synthesis • Bioassays
  21. chemical reactor F.G.Bessoth, A.J.de Mello, A.Manz, Anal. Comm. 36, 213-215

    (1999)
  22. None
  23. Continuous flow method

  24. 0 ms 6 ms chemical reactor

  25. Upchurch Scientific chemical reactor

  26. Inlet capillaries Syringes Rheodyne injection valve Injection loop outlet capillary

    Micromixer chip / PTFE interface chemical reactor
  27. N+ H H R1 R2 Cl- H H O MeOH

    N+ Cl- H2 O N R3 R4 R2 R1 C R1 N R2 N R4 R3 H2 O R1 N R2 N R4 R3 O R1/R2 = -CH2 (CH2 )3 CH2 - Piperidine hydrochloride + + Piperidinium cation + R3/R4 = -CH2 (CH2 )4 CH2 - Cyclohexyl isocyanide Nitrilium intermediate -Dialkylacetamide Formaldehyde N-Cyclohexyl-2-piperidin-1-yl-acetamide (1) (2) (3) (4) (5) (6) Multicomponent Chemistries: The Ugi Reaction 0oC
  28. Simultaneous Observation of Reactants, Intermediates, Products and By-products 20 mLmin-1

    50 nL injection loop Room temperature M.C.Mitchell, V.Spikmans, A.Manz, A.J.de Mello J.Chem.Soc., Perkin Trans.1, 2001, 514-518 (2001) educt intermediate side product main product intermediate
  29. horseradish peroxidase assay flow rate dependence of signal <11.5s <570ms

    50 ng/mL HRP
  30. horseradish peroxidase assay calibration curves

  31. Ubiquitin Native/A state Native state A state Methanol pD=2

  32. Set-up for NMR measurement Syringe pumps NMR Micromixer Detection coil

    (200mm i.d.) 250mm i.d. 75mm i.d.
  33. Picture of detection coil Sweedler group, Univ. of Illinois Reservoir

    Capillary 1cm
  34. NMR set-up Syringe pump 3m Capillary NMR NMR Sweedler group,

    Univ. of Illinois
  35. 10 mL/min (24sec) 40 mL/min (6sec) His68 Tyr59 N N

    N N A A A A M.Kakuta, D.A.Jayawickrama, A.M.Wolters, A.Manz, J.V.Sweedler, Anal.Chem. 75, 956-960 (2003)
  36. 1643 cm-1 1661 cm-1 1671cm-1 wavenumber [cm-1] 1600 1620 1640

    1660 1680 1700 arbitrary units -2e-5 0 2e-5 4e-5 6e-5 2nd derivative A Result (FT-IR) wavenumber [cm-1] 1600 1620 1640 1660 1680 1700 arbitrary units -4e-5 -2e-5 0 2e-5 4e-5 6e-5 8e-5 1e-4 absorbance [AU] 0.000 0.005 0.010 0.015 0.020 0.025 ubiquitin (native) ubiquitin (mixed) absorbance 2nd derivative M.Kakuta, P.Hinsmann, A.Manz, B.Lendl, Lab Chip 3, 82-85 (2003) N N
  37. Post-column reactor: µLC-Chip-MS Set-up 25cm x 100µm µLC column Injector

    Waste LC pumping system 35cm x 50µm TOF MS Electrospray Micromixer chip Syringe pump TMPP+ / TEA CMPI UV detector
  38. µLC-Chip-MS Set-up Electrospray needle High voltage Nebulising gas

  39. Br - (MeO)3 Ph P + Ph(OMe)3 (MeO)3 Ph N

    H NH2 O R H O + Br - (MeO)3 Ph P + Ph(OMe)3 (MeO)3 Ph N H N O H R Acetic acid, 30 mins, sonicate Aldehyde 4-Hydrazino-4-oxobutyl-TMPP+Br- Hydrazino derivative of aldehyde Reaction of Aldehydes (and ketones) with 4-hydrazino-4-oxobutyl-TMPP
  40. Gradient µLC-chip-MS of Ketones/Aldehydes Column 10cm long 200µm i.d. 5µm

    Hypersil C18 Ultra High Purity Elite Separation 5 minute gradient from 0 to 90% acetonitrile in water, containing 0.1% formic acid Injection 50nL Reagents all 1.0 mM at 1µL/min MS Micromass Q-Tof II Ketones/Aldehydes Products Cyclohexanone Valeraldehyde Cyclohexane carboxaldehyde Heptaldehyde V.Spikmans, S.J.Lane, B.Leavens, A.Manz, N.W.Smith, Rapid Commun. Mass Spectrom. 16, 1377-1388 (2002)
  41. Gradient µLC-chip-MS of Amines – isotope labeling analysis Methylheptylamine Methyloctylamine

    Methyldecylamine Methylhexylamine Products Accurate Mass Difference Isotopes: 2.012 Only characteristic pattern is necessary, not molecular weight
  42. Sequential DNA hybridization • Inject small volume plugs of probe

    DNA oligomers • Mix within ms with target DNA • Observe hybridization reaction as the plug moves downstreams
  43. DNA hybridisation assay Intercalating dye alone low DNA oligomers low

    Oligomer dimers medium dsDNA high
  44. Influence of DNA Sequence on Fluorescence Levels Order: matching, 1

    mismatch, 2 mismatches, 5 mismatches Order: matching, 1 mismatch, 2 mismatches Sequence-dependent responses from two different experiments.
  45. Quick Decision: Exploiting Photobleaching Effects M.Heule, A.Manz, Lab Chip 4,

    506-511 (2004)
  46. microfluidic DNA assays • 1 second to decision • no

    complicated surface chemistry • sensitivity 100-200nM • could be competing with DNA arrays
  47. What would I address? [example ] protein separations by free-flow

    electrophoresis … isoelectric focusing
  48. free-flow electrophoresis - proteins + -

  49. IEF chip • 36 x 20 um inlet channels •

    72 x 20 um outlet channels • each side 108 x 4 um channels • separation bed 12.2 x 4.1 mm – 15,552 posts – 30 x 30 um
  50. free-flow electrophoresis

  51. very fast electrophoresis C.-X.Zhang, A.Manz, Anal. Chem. 75, 5759-5766 (2003)

  52. fluorescence [arb. units] time [s] 0 40 80 120 160

    1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. comparison FFE CE
  53. IEF FFE Isoelectric focusing using free-flow electrophoresis

  54. IEF proof of principle 12 mm 0 mm 4 mm

    4 mm = 500 ms angiotensin I, 1.75 kV, 10 uL/min Y.Xu, C.X.Zhang, A.Manz, Lab Chip 3, 224-227 (2003)
  55. IEF - proteins angiotensin I, 1.75 kV, 10 uL/min 400ms

  56. IEF - IGF-1 10μm 4mm

  57. IEF chip • volume 240 nL plus wells • at

    10 uL/min – 1.4 seconds (time to information) • preconcentration 100 - 400x
  58. None
  59. Chip technology, miniaturization of (bio)analytical chemistry methods Andreas Manz I

    S A S INSTITUTE FOR ANALYTICAL SCIENCES Dortmund and Berlin
  60. Andreas Manz I S A S INSTITUTE FOR ANALYTICAL SCIENCES

    Dortmund and Berlin … fun stuff from the Manz’ new lab
  61. T.Vilkner, A.Shivji, A.Manz, Lab Chip 5, 140-145 (2005)

  62. dry powder dispenser T.Vilkner, A.Shivji, A.Manz, Lab Chip 5, 140-145

    (2005) principle: fluidized bed
  63. dry powder dispenser T.Vilkner, A.Shivji, A.Manz, Lab Chip 5, 140-145

    (2005) principle: fluidized bed
  64. dry powder dispenser T.Vilkner, A.Shivji, A.Manz, Lab Chip 5, 140-145

    (2005) reproducible injections of 1 – 50 mg of dry powder (non-cohesive)
  65. MALD for bacterial spore disruption O.Hofmann, K.Murray, A.S.Wilkinson, T.Cox, A.Manz,

    Lab Chip 5, in press 2005 Matrix Assisted Laser Desorption
  66. MALD for bacterial spore disruption O.Hofmann, K.Murray, A.S.Wilkinson, T.Cox, A.Manz,

    Lab Chip 5, in press 2005 6mW nitrogen laser 337nm 4ns pulse width 75kW peak power
  67. MALD for bacterial spore disruption O.Hofmann, K.Murray, A.S.Wilkinson, T.Cox, A.Manz,

    Lab Chip 5, in press 2005 before Bacillus globigii spores 3-hydroxypicolinic acid after
  68. Np XRF chip E.Greaves, A.Manz, Lab Chip 5, in press

    2005 Am 241 95 Np 237 93 458 years α emitter 900 nCi
  69. Np XRF chip E.Greaves, A.Manz, Lab Chip 5, in press

    2005 h
  70. Np XRF chip E.Greaves, A.Manz, Lab Chip 5, in press

    2005 Sn Zn Ni
  71. Vac. gauge Pump HV supply ADC HV Amp Pre HP

    Ge PC CPU S100 HV Leak NIM bin A.- B.- X-ray chip E.Greaves, A.Manz, Lab Chip 5, in press 2005
  72. X-ray chip E.Greaves, A.Manz, Lab Chip 5, in press 2005

    0.1-10 mtorr 200-600 nA 4 mW
  73. cyclic separations

  74. None
  75. None
  76. chromatography like

  77. injection detection speed measurement

  78. None
  79. injection detection speed measurement

  80. filling the sample loop… here is the chromatographer ! and,

    injectioooon !!! … some irreversible processes …
  81. None
  82. None
  83. None
  84. None
  85. linear 1d separations injection detection

  86. linear 1d separations injection of small sample volume single point

    detection resolution depends on pressure applied, or voltage applied
  87. linear 1d separations today’s liquid chromatography is at upper pressure

    limit today’s electrophoresis is at voltage limit
  88. how to overcome? somehow keeping compound of interest in same

    position
  89. 1937 A.Tiselius flow-counterbalanced electrophoresis Trans. Fraday Soc. 1937, 33, 524-531

    1990 S.C.Lee et al EOF-counterbalanced CE 1994 C.T.Culbertson et al flow-counterbalanced CE
  90. how to overcome? mass spectrometry: time-of-flight MS vs. cyclotron MS

    particle accelerators: linear accelerator vs. synchrotron
  91. cyclic separation is not new… 1962 direct pumping recycling LC:

    Porath, J., Bennich, H., Arch. Biochem. Biophys.1962, Suppl.1 , 152–156.
  92. 1962 direct pumping recycling LC: column inj det p valve

  93. cyclic separation is not new… 1971 alternate pumping recycling LC:

    Biesenberger, J. A., Tan, M., Duvdevani, I., Maurer, T., J. Polym.Sci.B Polym.Lett.1971, 9 , 353–357.
  94. 1971 alternate pumping recycling LC: column inj det p valve

    column
  95. cyclic separation is not new… 1993 synchronized cyclic CE: Burggraf,

    N., Manz, A., Effenhauser, C. S., Verpoorte, E., De Rooij, N. F., Widmer, H. M., HRC-J.High Resolut.Chromatogr.1993, 16 , 594–596.
  96. 1993 synchronized cyclic CE: + -

  97. 1993 synchronized cyclic CE: + -

  98. 1993 synchronized cyclic CE: + -

  99. cyclic separation is not new… 2001 electrophoretron: Choi, J. G.,

    Kim, M., Dadoo, R., Zare, R. N., J.Chromatogr.A, 2001, 924 , 53–58.
  100. 2001 electrophoretron: + -

  101. advantages plate number N and resolution Rs are increasing over

    time same driving force is used multiple times
  102. problems peak capacity is going towards 0 many sample components

    are eliminated pump or valve volume decreases N time
  103. vA vB detection window separation channel vsolution • in principle

    infinitely long separation column • small driving force: determined by circle circumference • resolution proportional to the square root of time Fourier transform chromatography
  104. issues constant cross-section around cycle (pump?) high flow velocity for

    small channel diameters (pump?) overtaking of sample components (detection?) panic
  105. overtaking of sample components (detection?)

  106. Shah Convolution - FT- Detection H. J. Crabtree, M. U.

    Kopp and A. Manz, Anal. Chem., 1999, 71,
  107. None
  108. wavelet transform J.C.T.Eijkel, Y.C.Kwok, A.Manz, Lab Chip, 2001, 1, 122.

  109. 7 Hz 14 Hz wavelet transform

  110. vA vB detection window separation channel vsolution Fourier transform chromatography

  111. constant cross-section around cycle (pump?)

  112. pumping for cyclic LC separation electrohydrodynamic magnetohydrodynamic AC electroosmotic shear

    panic
  113. magnetohydrodynamic Eijkel, J. C. T., Dalton, C., Hayden, C. J.,

    Burt, J. P. H., Manz, A., Sens.Actuators B 2003, 92 , 215–221.
  114. Debesset, S., Hayden, C. J., Dalton, C., Eijkel, J. C.

    T., Manz, A., Lab Chip 2004, 4 ,396-400. AC electroosmotic
  115. shear flow pumping G. Desmet and G. V. Baron, J.

    Chromatogr. A, 1999, 855(1), 57.
  116. shear flow pumping movement of plate v fluid velocity v/2

    movement of plate = 0 G. Desmet and G. V. Baron, J. Chromatogr. A, 1999, 855(1), 57.
  117. shear flow pumping movement of plate v fluid velocity v/2

    movement of plate = 0
  118. shear flow pumping movement of plate v fluid velocity v/2

    movement of plate = 0
  119. shear flow pumping non-retained v/2 retained = 0 stationary phase

  120. shear flow pumping non-retained v/2 retained = 0

  121. shear flow pumping non-retained v/2 retained = 0

  122. shear flow pumping retained v non-retained v/2 stationary phase

  123. shear flow pumping retained v non-retained v/2

  124. shear flow pumping retained v non-retained v/2

  125. shear flow pumping very high speeds possible nm gaps should

    lead to high N main problem: the end of the plate is the end of the pumping (no more than N=10,000 shown so far)
  126. chip design channel width 2mm, depth 15um channel circumference 62.8mm

  127. None
  128. None
  129. None
  130. Fourier transform chromatography shear flow pumping Rotation stage Loading direction

    Chips Stationary clamp Injection pump
  131. stationary phase Supershere 60 RP-8 particles tri-methylopropane-trimethacrylate

  132. fully retained sample, raw data u = 1.5mm/s (Péclet no

    = 14) mobile phase methanol/water 1:1 sample coumarin dyes
  133. fully retained sample, FT time scale

  134. fully retained sample, FT chromatographic window panic

  135. non-retained fully retained panic

  136. non-retained fully retained panic

  137. non-retained fully retained panic

  138. non-retained fully retained, or overtone retained …a separation…?

  139. None
  140. conclusions • cyclic separation can be done without sample loss

    • plate numbers and resolution increase with time • shear flow pumping most promising • deconvolution of detection signal by Fourier or wavelet transform
  141. open questions • which signal deconvolution is best? • what

    dimensions are optimal for performance (theory)? • is there a simultaneous use for two independent stationary phases? • how about gradient elution?
  142. Acknowledgment Oliver Hofmann Torsten Vilkner Xin Yang Eduardo Greaves, Prof.

    Jan Eijkel Sebastien Debesset Dirk Janasek Gareth Jenkins Joachim Franzke Qinetiq, UK Pfizer, UK Smiths Detection, UK Hitachi Ltd, Japan Universidad Simon Bolivar, Caracas, Venezuela Mercator professorship, Germany
  143. any questions?