Upgrade to Pro — share decks privately, control downloads, hide ads and more …

理科における認知欲求尺度の精度に関する基礎的研究 ―項目反応理論に基づく分析を通して―

Daiki Nakamura
September 10, 2017

理科における認知欲求尺度の精度に関する基礎的研究 ―項目反応理論に基づく分析を通して―

日本教科教育学会第43回全国大会 2017年9月10日

Daiki Nakamura

September 10, 2017
Tweet

More Decks by Daiki Nakamura

Other Decks in Education

Transcript

  1. 研究概要 研究の目的 理科における認知欲求尺度を構成し, その精度について検討すること 2 1. 尺度構成の詳細 2. 尺度の精度 3.

    集団差の有無 項目によって難易度が異なる 特性値の高い人から低い人まで 精度よく測定可能 小学生には認知欲求の性差や 学年差が認められない 理科における認知欲求 が測定可能になった!
  2. 認知能力と非認知能力 認知能力 ⚫ IQ ⚫ 学力テストの学力 ⚫ 思考力 非認知能力 ⚫

    人間の気質 ⚫ 性格的な特徴 4 近年の学校教育では、認知能力の育成を重視 非認知能力は数値化が難しく、 その重要性があまり示されてこなかった (中室,2015)
  3. 非認知能力の重要性 5 就職率 将来の年収 長期的な影響 Gutman & Scoon (2013) ;

    Heckman, Humphries & Kautz (2014) 非認知能力の影響力 非認知能力 学校の成績 学力 短期的な影響 Poropat(2014) ; 埼玉県教育委員会(2017) 生涯に渡っての持続的な影響力がある
  4. 非認知能力とは 6 非認知能力の整理(Gutman & Schoon, 2013 をもとに作成) 分類 具体例 自己認識

    自信、やりぬく力 意欲 学習意欲、やる気 忍耐力 忍耐強さ、粘り強さ、根気強さ 自制心 意志力、精神力 メタ認知 理解度の把握、自身の状況把握 社会性 社会性、リーダーシップ 創造性 創造性、創意工夫 性格特性 神経質、外向性、好奇心、協調性
  5. 理科における資質・能力 8 1. 自然の事物・現象についての理解 を図り,観察,実験などに関する 基本的な技能を身に付けるように する。 2. 観察,実験などを行い,問題解決 の力を養う。

    3. 自然を愛する心情や主体的に問題 解決しようとする態度を養う。 *小学校学習指導要領 理科の目標 認知能力 非認知能力 知識・技能
  6. 理科における非認知能力 9 3. 自然を愛する心情や主体的に問題解決し ようとする態度を養う。 • 意欲的に自然の事物・現象に関わろうとする態度 • 粘り強く問題解決しようとする態度 •

    学んだことを自然の事物・現象や日常生活に当てはめてみ ようとする態度 文部科学省(2017)小学校学習指導要領解説理科編 観察・実験を通した一連の問題解決に自ら取り組み、 それを楽しもうとする内発的な傾向 理科における非認知能力
  7. 構成概念の規定 10 観察・実験を通した一連の問題解決に自ら取り組み、 それを楽しもうとする内発的な傾向 理科における非認知能力 Cacioppo & Petty(1982) 認知欲求 努力を要する認知活動に従事したり、

    それを楽しもうとする内発的な傾向 合理的思考 (Manktelow, 2012;Stanovich, 2016) 理科における認知欲求 理科における認知欲求を測定する尺度の開発 相関 (認知能力) (非認知能力)
  8. 項目の収集と作成 12 観察・実験を通した一連の問題解決に取り組んだり、 それを楽しもうとする内発的な傾向 理科における認知欲求 Q1 理科の知識を使って,自然現象を説明していくことは楽しい。 Q2 実験結果について考察する時間が好きである。 Q3

    自分の考えが合っていたかどうかを実験で確かめることが 好きである。 Q12 ふしぎな自然現象に出会うとワクワクする。 Q13 自然現象のきまりを考えることが好きである。
  9. データの概要 14 得られたデータの概要 ID 学年 性別 Q1 ・・・ Q15 1

    5 M 4 2 2 5 F 5 5 3 5 M 1 3 4 5 F 4 5 … … … … … … 178 6 M 5 4 5件法(1~5) 1:まったくあてはまらない | 5:とてもよくあてはまる
  10. 平均値と項目識別力 15 平均 標準 偏差 項目 識別力 平均 標準 偏差

    項目 識別力 Q1 3.46 1.15 .78 Q9 3.40 1.25 .80 Q2 3.36 1.19 .73 Q10 3.88 1.26 .72 Q3 3.96 1.17 .75 Q11 3.61 1.21 .62 Q4 3.34 1.21 .69 Q12 3.85 1.26 .67 Q5 3.49 1.26 .60 Q13 3.29 1.25 .80 Q6 3.56 1.27 .80 Q14 3.25 1.24 .79 Q7 3.44 1.27 .68 Q15 3.30 1.27 .73 Q8 3.09 1.32 .77 Q5:日常生活の様々な場面で自然現象に対する疑問を持つことが多い。 Q7:身の回りの自然現象に対して疑問を持つ方だ。 .77 内容が類似 極端な相関
  11. 因子数の検討 16 ポリコリック相関行列に基づく平行分析 2 4 6 8 10 12 0

    2 4 6 8 平行分析 因子数 固有値 データ相関行列 乱数相関行列 1因子 を提案
  12. 探索的因子分析 17 カテゴリカル因子分析(最尤法プロマックス回転) 因子 負荷 共通性 独自性 因子 負荷 共通性

    独自性 Q1 .82 .66 .34 Q10 .81 .65 .35 Q2 .78 .61 .39 Q11 .67 .45 .55 Q3 .79 .62 .38 Q12 .71 .51 .49 Q4 .70 .49 .51 Q13 .82 .68 .32 Q6 .83 .69 .31 Q14 .84 .71 .29 Q8 .81 .65 .35 Q15 .79 .62 .38 Q9 .83 .70 .30 因子 寄与率 .62 信頼性 係数 α=.95 1因子構造
  13. 妥当性の検討 18 外的基準との相関係数 拡散的 好奇心 特殊的 好奇心 探求的・ 合理的 多面的

    反省的 認知欲求 拡散的 好奇心 1 特殊的 好奇心 0.80 1 探求的・ 合理的 0.83 0.80 1 多面的 0.71 0.75 0.77 1 反省的 0.73 0.72 0.77 0.81 1 認知欲求 0.81 0.78 0.81 0.73 0.76 1 好奇心 批判的思考 基準連関妥当性
  14. 項目反応理論(IRT)について 19 • 一次元性 • 局所独立性 • 単調性 1. 集団や質問項目に関係なく、被験者の

    特性値を同じ物差しで測定できる 2. 測定精度をきめ細かく観察できる ⚫ 項目反応理論(IRT)の利点 ⚫ 項目反応理論(IRT)で必要な仮定
  15. 一次元性の検討 20 確認的因子分析により、 1因子構造への適合を確認 .31 .34 .34 .34 .34 .38

    .40 .42 .42 .44 .51 .53 .59 .64 .69 .70 .75 .76 .76 .78 .79 .81 .81 .81 .81 .83 Q1 Q2 Q3 Q4 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 CFI :0.94 TLI :0.93 ※WLSMV(重み付き最小二乗法)を使用 F1 RMSEA:0.09 SRMR :0.04 高いほど良い適合 低いほど良い適合
  16. 局所独立の検討 21 Yenの Q3 統計量 Q1 Q2 Q3 Q4 Q6

    Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q1 1 Q2 0.04 1 Q3 0.12-0.07 1 Q4 0.02-0.15-0.04 1 Q6 -0.12-0.13 0.16 0.00 1 Q8 -0.10-0.13-0.08-0.05-0.05 1 Q9 -0.16-0.09 0.02 0.00-0.13 0.02 1 Q10 -0.14-0.18 0.02-0.04-0.20-0.01 0.03 1 Q11 -0.15-0.03-0.19 0.02-0.06-0.17 0.00 0.14 1 Q12 -0.05-0.02 0.00-0.03-0.15-0.12-0.05-0.15-0.07 1 Q13 -0.08-0.08-0.21-0.07-0.30-0.04-0.27-0.18 0.05 0.25 1 Q14 -0.15 0.07-0.33-0.12 0.04-0.26-0.16-0.14 0.24-0.26 0.02 1 Q15 -0.15-0.09-0.10-0.14-0.17 0.06-0.11 0.05-0.28-0.03 0.02-0.21 1 ※絶対値が0.36以下であればOK(Smits et al., 2012) 局所独立の仮定 を満たしている
  17. 単調性の検討 22 Q 組み合わ せの数 不一致数 比率 Q 組み合わ せの数

    不一致数 比率 Q1 3 0 0 Q10 8 0 0 Q2 4 0 0 Q11 4 0 0 Q3 4 0 0 Q12 3 0 0 Q4 4 0 0 Q13 3 0 0 Q6 4 0 0 Q14 4 0 0 Q8 12 0 0 Q15 3 0 0 Q9 3 0 0 モッケン尺度分析(MSA)による潜在単調性の検討 各項目が構成概念と単調性の関係にあることを確認した 特性値の高い者は、低い者に比べて、 より上位の選択肢を選ぶ状態
  18. 段階反応モデル(GRM)の適用 23 項目母数の推定結果(周辺最尤推定法) b 1 b 2 b 3 b

    4 a Q1 -1.76 -0.74 0.32 1.21 2.66 Q2 -1.55 -0.53 0.31 1.46 2.43 Q3 -1.99 -1.14 -0.36 0.55 2.34 Q4 -1.53 -0.80 0.34 1.63 1.70 Q6 -1.54 -0.62 0.17 0.91 2.74 Q8 -1.05 -0.18 0.67 1.34 2.55 Q9 -1.33 -0.53 0.29 1.24 2.71 Q10 -1.61 -0.98 -0.32 0.53 2.26 Q11 -1.90 -1.16 0.12 1.16 1.54 Q12 -1.87 -0.90 -0.25 0.62 1.86 Q13 -1.23 -0.50 0.42 1.29 2.67 Q14 -1.11 -0.46 0.47 1.36 3.00 Q15 -1.31 -0.39 0.43 1.29 2.41 ※ロジスティックス計量 極端な難易度の項目はない 識別力は全て高い
  19. 項目分析 24 -4 -2 0 2 4 0.0 0.2 0.4

    0.6 0.8 1.0 項目反応カテゴリ特性曲線 反応率 1 2 3 4 5 -4 -2 0 2 4 0.0 0.2 0.4 0.6 0.8 1.0 特性値 θ 1 2 3 4 5 Item: Q3 Item: Q13 自分の考えが合っていたか どうかを実験で確かめる ことが好きである。 自然現象のきまりを考える ことが好きである。 難 易 質問項目の特性 が詳細に分かる! 反応率
  20. 被験者母数の推定と解釈 25 ヒストグラム 0 10 20 30 40 -3 -2

    -1 0 1 2 3 特性値 (θ) 人数 平均 :0.25 中央値 :0.24 標準偏差:1.01 被験者の特性値 θ の分布 仮定通り、 標準正規分布 に近い値
  21. テスト情報曲線 26 特性値 θ に対応した情報量 -4 -2 0 2 4

    0 5 10 15 20 特性値 (θ) 情報量 幅広い特性値で 精度よく測定可能
  22. 性差の検討 28 ベイズ統計学に基づく推定 EAP p.sd 2.5% 50% 97.5% Rhat μF

    0.21 0.12 -0.02 0.22 0.45 1.00 μM 0.27 0.10 0.07 0.27 0.47 1.00 p (μM - μF > 0) 0.63 cohen`s d 0.05 0.15 -0.24 0.05 0.35 1.00 男女の差が 0以上である 確率は63% 収束診断 女 男 母集団における 特性値の平均 (EAP推定値) 母集団(小学生)において、特性値の性差は認められない HMC法 n_eff=100000
  23. 性差の検討 29 特異項目機能(DIF)の検出 Q 指標K Q 指標K Q1 0.12 Q10

    0.27 Q2 0.11 Q11 0.19 Q3 0.06 Q12 0.24 Q4 0.13 Q13 0.14 Q6 0.12 Q14 0.02 Q8 0.03 Q15 0.09 Q9 0.17 ※指標K>0.4でDIF 反応傾向の性差はどの項目においても認められない 集団に依存する反応傾向の差 「ピンク色はどのくら い好きですか?」 男<女 DIF検出! 例
  24. 学年差の検討 30 ベイズ統計学に基づく推定 EAP p.sd 2.5% 50% 97.5% Rhat μF

    0.20 0.12 -0.04 0.20 0.44 1.00 μM 0.29 0.09 0.11 0.29 0.48 1.00 p (μM - μF > 0) 0.73 cohen`s d 0.09 0.15 -0.20 0.09 0.38 1.00 学年間の差が 0以上である 確率は73% 収束診断 6年 5年 母集団における 特性値の平均 (EAP推定値) 特性値の学年差は認められない HMC法 n_eff=100000
  25. 水平テストの構築 31 テストA:7項目(Q2,3,4,6,8,12,15) テストB:6項目(Q1,9,10,11,13,14) -4 -2 0 2 4 0

    2 4 6 8 10 12 14 テスト情報曲線 特性値 θ -4 -2 0 2 4 0 2 4 6 8 10 12 14 I情報量 水平テスト(精度の等しいテスト)を構築 テストA テストB 同一集団へ複数回の質問 紙調査が実施可能になる
  26. 研究概要 研究の目的 理科における認知欲求尺度を構成し, その精度について検討すること 1. 尺度構成の詳細 2. 尺度の精度 3. 集団差の有無

    項目によって難易度が異なる 特性値の高い人から低い人まで 精度よく測定可能 小学生には認知欲求の性差や 学年差が認められない 理科における認知欲求 が測定可能になった!