Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
みんなでたのしむ math/big / i love math big
Search
convto
May 10, 2024
Technology
0
180
みんなでたのしむ math/big / i love math big
convto
May 10, 2024
Tweet
Share
More Decks by convto
See All by convto
gob バイナリが Go バージョンによって 出力が変わることについて調べてみた / Investigating How gob Binary Output Changes Across Go Versions
convto
0
55
Go 関連の個人的おもしろCVE 5選 / my favorite go cve
convto
3
320
バイナリを眺めてわかる gob encoding の仕様と性質、適切な使い方 / understanding gob encoding
convto
6
2k
Go1.22からの疑似乱数生成器について/go-122-pseudo-random-generator
convto
2
480
Go1.20からサポートされるtree構造のerrの紹介と、treeを考慮した複数マッチができるライブラリを作った話/introduction of tree structure err added since go 1_20
convto
0
890
byte列のbit表現を得るencodingライブラリ作った
convto
1
1.1k
Go runtimeの歩き方/how to follow go runtime function
convto
1
900
入出金ドメインの苦労話と解決へのアプローチ/funds in/out difficulties and solutions
convto
2
1.3k
rsa_understanding_memo
convto
0
550
Other Decks in Technology
See All in Technology
AWSコンテナ本出版から3年経った今、もし改めて執筆し直すなら / If I revise our container book
iselegant
13
3.5k
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.6k
一休.comレストランにおけるRustの活用
kymmt90
3
430
Data Migration on Rails
ohbarye
7
5k
Hotwire光の道とStimulus
nay3
5
2.4k
AWS CDKでデータリストアの運用、どのように設計する?~Aurora・EFSの実践事例を紹介~/aws-cdk-data-restore-aurora-efs
mhrtech
3
120
オニオンアーキテクチャで実現した 本質課題を解決する インフラ移行の実例
hryushm
13
2.9k
独自ツール開発でスタジオ撮影をDX!「VLS(Virtual LED Studio)」 / dx-studio-vls
cyberagentdevelopers
PRO
1
160
カメラを用いた店内計測におけるオプトインの仕組みの実現 / ai-optin-camera
cyberagentdevelopers
PRO
1
120
サイバーエージェントにおける生成AIのリスキリング施策の取り組み / cyber-ai-reskilling
cyberagentdevelopers
PRO
2
160
わたしとトラックポイント / TrackPoint tips
masahirokawahara
1
230
Commitment vs Harrisonism - Keynote for Scrum Niseko 2024
miholovesq
4
260
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
27
1.9k
[RailsConf 2023] Rails as a piece of cake
palkan
51
4.8k
Building Better People: How to give real-time feedback that sticks.
wjessup
363
19k
Raft: Consensus for Rubyists
vanstee
136
6.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Why Our Code Smells
bkeepers
PRO
334
57k
Art, The Web, and Tiny UX
lynnandtonic
296
20k
Designing Experiences People Love
moore
138
23k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
32
1.8k
The Art of Programming - Codeland 2020
erikaheidi
51
13k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Unsuck your backbone
ammeep
668
57k
Transcript
みんなでたのしむ math/big 2024/05/10(金) Asakusa.go
自己紹介 @convto レイヤ低めの技術などに興味がありま す 読みはこんぶとです つくばエクスプレス沿線ユーザー、論理 浅草勢として参戦しました
突然ですが Go Conference 2024 参加しますか?
すきなパッケージなにを選びましたか?
ぼくは math/big ! - math/big はいいぞ - あったら嬉しい処理を標準で準備してくれ てるのは助かる -
実装も TAOCP で言及されてるやつばっ かり - どういう課題があるのか、どういう面白い ことしてるのか、ざっと触りを伝えたい
発表の目的 - 課題: math/big は面白いが, おもしろいと 言ってる人をあまり見かけない - 目的: どういう課題があるのか,
どういう 面白いことしてるのか, ざっと触りを伝え たい - いきごみ: 前提知識が必要なところもある ので, そのへんは深入りせずみんなでた のしみましょう〜
今日話すこと
contents - math/big ってなに? - どういうところで使われてるの? - 多倍長演算って大変なの? - math/big
はどういうアルゴリズムを実装 してるの? - まとめ: math/big はいいぞ
math/big ってなに?
ようは限界を超えて舞えるやつ
word size を超えた多倍長演算をサポートする - 値を word size の値の slice として扱っ
て、でかい整数や任意精度の浮動小数と かの演算をする - な、なにがうれしいんだってばよ...? big.Int の型はこれだけ (nat は word の slice)
どういうところで使われてるの?
使われかたいろいろ - math/big.Int だけみても, 暗号周りでよく 使う - 巨大な整数の冪乗とかたくさんする ため, RSA
以外にもいろいろ - math/big.Float は ethereum/go-ethereum とかで使われて るのを見た std crypto で使われてる図
多倍長演算って大変なの?
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len x_1 x_2 x_3 x_4 y_1 y_2 y_3 y_4 +
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len x_1 x_2 x_3 x_4 y_1 y_2 y_3 y_4 + r_4 carry_4
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len x_1 x_2 x_3 x_4 y_1 y_2 y_3 y_4 + r_4 r_3 carry_3
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len x_1 x_2 x_3 x_4 y_1 y_2 y_3 y_4 + z_4 z_3 carry_3 以下繰り返す...
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len x_1 x_2 x_3 x_4 y_1 y_2 y_3 y_4 + z_4 z_3 z_2 z_1 carry_1
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len x_1 x_2 x_3 x_4 y_1 y_2 y_3 y_4 - z_4 z_3 z_2 z_1 borrow_4 … 減算も大体おなじ! 足りなかったら借りてきたりする とかちょっと違いはあるが、減 算も大体おなじ!
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len - 乗算, 除算は結構きつい. ざつにやると O(N^2) になる
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len - 乗算, 除算は結構きつい. ざつにやると O(N^2) になる x_1 x_2 x_3 y_1 y_2 y_3 x
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len - 乗算, 除算は結構きつい. ざつにやると O(N^2) になる x_1 x_2 x_3 y_1 y_2 y_3 x z_3:3 z_2:3 z_1:3 c_3:3 c_2:3 c_1:3
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len - 乗算, 除算は結構きつい. ざつにやると O(N^2) になる x_1 x_2 x_3 y_1 y_2 y_3 x z_3:3 z_2:3 z_1:3 c_3:3 c_2:3 c_1:3 z_3:2 z_2:2 z_1:2 c_2:2 c_3:2 c_1:2
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len - 乗算, 除算は結構きつい. ざつにやると O(N^2) になる x_1 x_2 x_3 y_1 y_2 y_3 x z_3:3 z_2:3 z_1:3 c_3:3 c_2:3 c_1:3 z_3:2 z_2:2 z_1:2 c_2:2 c_3:2 c_1:2 つづく...
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len - 乗算, 除算は結構きつい. ざつにやると O(N^2) になる x_1 x_2 x_3 y_1 y_2 y_3 ÷
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len - 乗算, 除算は結構きつい. ざつにやると O(N^2) になる x_1 x_2 x_3 y_1 y_2 y_3 ÷ z_1 z_2 z_3 上の桁から for 1..9 mul(y, i) して、xに収まる最大の値を入 れていく...
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len - 乗算, 除算は結構きつい. ざつにやると O(N^2) になる - ぼくらは (bigint^bigint) mod bigint とか をやりたがるが, そんなことをすると号泣 してしまう
計算コストとか (多倍長整数) - 加算, 減算は雑にやっても O(N) とか. N は word
slice の len - 乗算, 除算は結構きつい. ざつにやると O(N^2) になる - ぼくらは (bigint^bigint) mod bigint とか をやりたがるが, そんなことをすると号泣 してしまう - O(N^2) の掛け合わせだってばよ...
それ以外に求められる機能とか - 算術演算だけじゃなくて、ほかにも求めら れるものがある - bit shift 的な操作もほしーよーとか - 任意サイズのでけー素数を生成して〜と
か - 泣いちゃいますね
大変です - 演算するだけでも計算量低いアルゴリズ ムを使わんとあかん, 素朴にやってはい けません - それだけじゃなくて, いくつかの要求もあ るためそれにも答えないとあかん
math/big はどういう アルゴリズムを実装してるの?
てきとうにpickして説明
karatsuba 法による多倍長整数乗算 - [x_1, x_2] * [y_1, y_2] の乗算は, 4回
計算必要 - x1*y1, x1*y2, x2*y1, x2*y2 - (厳密にはこれらを足し合わせる必要 があるが省略)
x_1 x_2 y_1 y_2 x_2*y_2 x karatsuba 法による多倍長整数乗算 - [x_1,
x_2] * [y_1, y_2] の乗算は, 4回 計算必要 - x1*y1, x1*y2, x2*y1, x2*y2 - (厳密にはこれらを足し合わせる必要 があるが省略) x_2*y_1 x_1*y_2 x_1*y_1 * word * word * (word ^ 2)
x_1 x_2 y_1 y_2 x_2*y_2 x karatsuba 法による多倍長整数乗算 - [x_1,
x_2] * [y_1, y_2] の乗算は, 4回 計算必要 - x1*y1, x1*y2, x2*y1, x2*y2 - (厳密にはこれらを足し合わせる必要 があるが省略) - これを3回にできるテクがある x_2*y_1 x_1*y_2 x_1*y_1 * word * word * (word ^ 2)
ふつうにやるとこう x_2*y_1 x_1*y_2 ( + ) + << word x_2*y_2
x_1*y_1 << (word * 2) + + 乗算4回
こいつをグッとにらむ x_2*y_1 x_1*y_2 ( + )
こいつをグッとにらむ x_2*y_1 x_1*y_2 ( + ) = x_2 + x_1
y_1 + y_2 ( * ) - ( + ) x_1*y_1 x_2*y_2
こいつをグッとにらむ x_2*y_1 x_1*y_2 ( + ) = x_2 + x_1
y_1 + y_2 ( * ) - ( + ) x_1*y_1 x_2*y_2 すでに求めてるの でコストなし
こいつをグッとにらむ x_2*y_1 x_1*y_2 ( + ) = x_2 + x_1
y_1 + y_2 ( * ) - ( + ) x_1*y_1 x_2*y_2 すでに求めてるの でコストなし コストの高い乗算が 2回 -> 1回に!
さっきのに入れるとこうなる x_2 + x_1 y_1 + y_2 ( * )
- ( + ) x_1*y_1 x_2*y_2 ( ) << word x_2*y_2 x_1*y_1 << (word * 2) + +
さっきのに入れるとこうなる x_2 + x_1 y_1 + y_2 ( * )
- ( + ) x_1*y_1 x_2*y_2 ( ) << word x_2*y_2 x_1*y_1 << (word * 2) + + 3回しか乗算してない!
ほかにもいろいろ! - GCD(最大公約数)だすやつ - 冪乗のmodとるやつ - 剰余環の逆元とるやつ - and more!
うれしい! - これほしいな〜と思うものは大体ある - かつ妥当なアルゴリズムを使ってる - 前提知識を求めるものも標準で作られて る! - 実質
TAOCP 本であり、本読みながら実 装みるとたのしい
まとめ: math/big はいいぞ
math/big はいいぞ - こいつがなかったら crypto package は ギャンこまり - 実質
TAOCP 詰め合わせセット. コードに も TAOCP section x.y を参考にしたでみ たいなコメントいっぱいある. 本片手に読 むといい勉強になる - みんなもでかい値を扱おう!
今週のスローガン - 夢は大きく値もでかく, みんなでやろう math/big
宣伝
https://layerx.connpass.com/event/317228/
ご清聴ありがとうございました