Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Cloud WorkflowsによるMLワークフロー
Search
Daigo HIROOKA
September 17, 2021
Technology
2
650
Cloud WorkflowsによるMLワークフロー
2021/09/17 第11回 MLOps勉強会の資料です。
Daigo HIROOKA
September 17, 2021
Tweet
Share
More Decks by Daigo HIROOKA
See All by Daigo HIROOKA
1年 SRE をやって見えてきた SRE とプロダクト開発の関わり方
daigo0927
0
410
Introducing "Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
daigo0927
0
860
GroupViT CVPR2022読み会スライド
daigo0927
0
970
Mip-NeRF ICCV2021輪読会スライド
daigo0927
1
1.6k
CVPR2021読み会スライド
daigo0927
2
950
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow
daigo0927
1
2.3k
Your_Classifier_is_Secretly_an_Energy_Based_Model_and_You_Should_Treat_It_Like_One.pdf
daigo0927
0
1k
Other Decks in Technology
See All in Technology
生成AIをより賢く エンジニアのための RAG入門 - Oracle AI Jam Session #20
kutsushitaneko
4
220
ガバメントクラウドのセキュリティ対策事例について
fujisawaryohei
0
530
社外コミュニティで学び社内に活かす共に学ぶプロジェクトの実践/backlogworld2024
nishiuma
0
260
レンジャーシステムズ | 会社紹介(採用ピッチ)
rssytems
0
150
開発生産性向上! 育成を「改善」と捉えるエンジニア育成戦略
shoota
2
350
C++26 エラー性動作
faithandbrave
2
730
Amazon VPC Lattice 最新アップデート紹介 - PrivateLink も似たようなアップデートあったけど違いとは
bigmuramura
0
190
終了の危機にあった15年続くWebサービスを全力で存続させる - phpcon2024
yositosi
10
8.1k
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
330
Postman と API セキュリティ / Postman and API Security
yokawasa
0
200
フロントエンド設計にモブ設計を導入してみた / 20241212_cloudsign_TechFrontMeetup
bengo4com
0
1.9k
TSKaigi 2024 の登壇から広がったコミュニティ活動について
tsukuha
0
160
Featured
See All Featured
RailsConf 2023
tenderlove
29
940
Bash Introduction
62gerente
608
210k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
290
Music & Morning Musume
bryan
46
6.2k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
The Pragmatic Product Professional
lauravandoore
32
6.3k
Site-Speed That Sticks
csswizardry
2
190
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
How to Ace a Technical Interview
jacobian
276
23k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Thoughts on Productivity
jonyablonski
67
4.4k
Transcript
Cloud Workflowsによる お手軽MLワークフロー 株式会社ブレインパッド 廣岡大吾 2021/09/17 第11回 MLOps勉強会
自己紹介 • 廣岡大吾 ◦ Twitter:dhirooka (@daigo_hirooka) • 機械学習エンジニア@ BrainPad ◦
関心:Deep LearningとMLOps • その他 ◦ GoProがタンスで眠っています ◦ 白金鉱業.FM (@shirokane_fm) Podcastで配信中 2
MLOpsと自動化 • MLOps=DevOps for ML • DevOpsの4つの柱 ◦ Culture ◦
Automation←今回の対象 ◦ Measurement ◦ Sharing • 自動化を進めることで、開発サイクルの効率化、ヒューマンエラーの抑制に繋がる • 今回はワークフローの構築による ML処理の自動化を紹介 ◦ 処理のワークフロー化自体は様々なユースケースに対応できる 3
MLOpsのためのチーム構成(理想) MLOpsを実現するには様々なスキルセットが必要 • データサイエンティスト • データエンジニア • DevOpsエンジニア • ビジネスエキスパート
• etc... 4 Introducing MLOps [Book]
小さくはじめるMLOps 5 • 少人数のチームで多くのスキルをカバーするのは大変 ◦ 特にDS主体のチームだとインフラスキルが薄くなりがち • 目標:ツールの学習コスト・インフラの運用負荷を抑えた自動化 ◦ 既知のツールとクラウドサービスの利用を念頭に置く
◦ 今回:Python, Docker, YAML on GCP ◦ 他ベンダーに切り替えるのも容易 • 小さくはじめて、大きく育てる ◦ 高度なサービスの利用やリッチな機能追加は後で良い
機械学習のワークフロー化 • 前処理や学習、デプロイなどの工程を分割し、フローとして定義する ◦ 処理に応じたリソース割り当て(メモリ、 GPU有無など)が可能になる ◦ 各処理を疎結合にすることでデバッグが容易になる ◦ ワークフロー定義そのものをコードとして管理できる(
Infrastructure as Code) 6
どのワークフローツールを使うか? • OSS:MLflow, Kubeflow Pipelines, Airflow, luigi etc… ◦ 一長一短(実験管理できたり、
UIがリッチだったり) • 小さくはじめる上で何を重視するか? ◦ 学習コストの低さ ◦ クラウド上でのサーバーレス動作によるインフラ管理コストの抑制 7
どのワークフローツールを使うか? • GCPの場合 • シンプルさとサーバーレス動作という点から Cloud Workflowsを検討 8 サービス名 概要
特長 留意点 Cloud Composer Airflowの マネージドサービス OSSベースであり 先人の知恵や資料が豊富 Not サーバーレス (GKE上で実行) Vertex Pipelines Kubeflow Pipelines or TFXの マネージドサービス OSSベース サーバーレス ML周りの機能やUIがリッチ 資料が少なく 学習コストが高い Cloud Workflows HTTPベースのAPIに対する ワークフローサービス サーバーレス YAMLでフローを定義でき 学習コストが少ない 機能としては簡素 OSSベースでないので ベンダ依存が発生
Cloud Workflows • GCPを含めてHTTPベースのAPIを 連結する汎用ワークフローサービス • YAMLでフローを定義 • サーバーレスで動作 •
条件分岐や再試行も可能 9 https://cloud.google.com/workflows?hl=ja
Cloud WorkflowsによるMLワークフロー • HTTP経由のコンテナ実行を連結してワークフローを構築 ◦ コンテナ実行基盤:Vertex AIカスタムトレーニング • 実装サンプル ◦
WorkflowsとVertex AIカスタムジョブによるお手軽 MLワークフロー ◦ ML処理:前処理と学習を別々に Dockerアプリとして実装 ◦ コンテナ実行@Vertex AIをWorkflowsでオーケストレート ◦ 他のサービスとも容易に連携、拡張可能 10
Vertex AIのカスタムトレーニング • Vertex AI:GCPの統合MLプラットフォーム ◦ Vertex AI • Vertex
AIカスタムトレーニング ◦ サーバーレスなDockerアプリケーション実行基盤 ◦ MLモデルの学習以外にも(たぶん)任意の処理が実行可能 ◦ 柔軟なインフラ要件:メモリ、 GPUなどの計算リソースを柔軟に指定できる ◦ サーバーレス:課金は処理が発生するタイミングだけで済む 11
Vertex AIのカスタムトレーニング • gcloud、Python、RESTなどからジョブを投入可能 ◦ ↓はgcloud経由の場合 12 Dockerfile 実行時コンフィグ マシンタイプや実行イメージ、
実行時引数などを指定できる
Vertex AIのカスタムトレーニング • Preview機能:Cloud Storage FUSEによるマウント ◦ GCSのバケットをVertex AIジョブにマウントしてアクセスできる ◦
ファイル読み書きにおけるローカル・クラウドの違いを意識しなくて済む ◦ Training code requirements | Vertex AI(現在は英語版のみ記載あり) 13
Cloud WorkflowsによるMLワークフロー • Vertex AIにおけるコンテナ実行を Workflowsでつなげる 14 簡易的なフローの可視化も可能
Cloud WorkflowsによるMLワークフロー 1. Vertex AIのカスタムジョブは POSTリクエスト経由で投下 2. リクエストボディに実行環境を指定 3. サービスアカウントに基づいた
認証済みリクエストも可能 4. レスポンスは変数として ワークフロー内で利用可能 15 ❶ ❷ ❸ ❹
Cloud WorkflowsによるMLワークフロー 1. Vertex AIジョブの状態確認は 待機+ループ処理で実装 2. ジョブが成功したら次の処理へ 16 ❷
Cloud WorkflowsによるMLワークフロー • YAML形式で直感的にワークフローを構成できた ◦ もちろん他のGoogle Cloud APIsと組み合わせることも可能 ◦ すべての
Workflows のコードサンプル | ワークフロー • できないこと ◦ 並列実行(独立な前処理 A・Bの同時実行など) ◦ ML特有の実験管理などは別途実装が必要 17
まとめ • シンプルな技術要素からでも十分に MLワークフローを構築できる ◦ ML処理はコンテナアプリとして実装 ◦ コンテナ実行を連結してワークフローを構築 • 小さくはじめて、大きく育てる
◦ ツールの学習コストの低さ、サーバーレスによるインフラコストの抑制を重視 ◦ 高度なサービスやリッチな機能追加は後回し • 要件が少ない段階ではベンダー間の違いは軽微 ◦ 今回はGCPのVertex AIとWorkflowsを利用したが、他クラウドでも似たような機能はある ◦ AWSならSageMakerとStep Functionsとか ◦ 細かい要件で悩むより、まずやってみることが重要 18