Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DatabricksホストモデルでAIコーディング環境を構築する
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Databricks Japan
January 27, 2026
Technology
0
240
DatabricksホストモデルでAIコーディング環境を構築する
Databricks Japan
January 27, 2026
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
[Iceberg Meetup #4] ゼロからはじめる: Apache Icebergとはなにか? / Apache Iceberg for Beginners
databricksjapan
0
590
Microsoft Tech Brief : Microsoft Fabric × Databricks × Microsoft Foundry が切り拓く Agentic Analytics 革命 ― Microsoft Ignite & Databricks 社 主催 DATA+AI World Tour Tokyo 最新アップデート総括
databricksjapan
1
150
Money Forwardにおける Databricks利⽤の現状と今後の展望
databricksjapan
0
110
Databricks Lakeflow クイックワークショップ / lakeflow-workshop
databricksjapan
0
210
NEXT弥⽣を⽀えるAI‧データ基盤構想 とシルバー構築について
databricksjapan
0
69
世界をつなぐ、SEGAのグローバルデータメッシュ 〜Databricksで進化する基盤とゲーム運営〜
databricksjapan
0
190
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
300
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
2
390
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
440
Other Decks in Technology
See All in Technology
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
170
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
340
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
3
1.2k
セキュリティ はじめの一歩
nikinusu
0
1.5k
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
2人で作ったAIダッシュボードが、開発組織の次の一手を照らした話― Cursor × SpecKit × 可視化の実践 ― Qiita AI Summit
noalisaai
1
370
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
230
データ民主化のための LLM 活用状況と課題紹介(IVRy の場合)
wxyzzz
2
660
システムのアラート調査をサポートするAI Agentの紹介/Introduction to an AI Agent for System Alert Investigation
taddy_919
2
1.7k
GCASアップデート(202510-202601)
techniczna
0
250
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
130
2026年はチャンキングを極める!
shibuiwilliam
9
1.9k
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.3k
Building AI with AI
inesmontani
PRO
1
680
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
The Pragmatic Product Professional
lauravandoore
37
7.1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Become a Pro
speakerdeck
PRO
31
5.8k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Building Adaptive Systems
keathley
44
2.9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
The Curious Case for Waylosing
cassininazir
0
230
Transcript
Databricksホストモデルで AIコーディング環境を 構築する JEDAI 2026 新春 Meetup! AIコーディング特集 2026年1月27日 データブリックス・ジャパン株式会社
中里 浩之 (シニア スペシャリストSA)
🤲 AIコーディングツール 使ってますか?
AIコーディングツール • Claude Code - Anthropicのターミナルベースのエージェント型 • Codex - OpenAIのマルチプラットフォーム対応エージェント
• Cursor - VSCodeフォークのAI特化型エディタ • Gemini CLI - GoogleのOSS・ターミナルベースのエージェント型 • Goose - Block社のOSS・エージェントフレームワーク • Cline - VSCode拡張のエージェント型 様々なツールが登場
Claude Codeとは • ターミナル上 で動作 • コードの読み書きやコマンド実行 が可能 • 会話形式でコーディングをはじめとしたあらゆる作業
を支援 • モデルはClaude Opus / Sonnetを使用 Anthropic公式のAIコーディングツール
DatabricksホストのClaude利用のメリット エンタープライズ利用の障壁をクリア 観点 Databricks基盤モデル APIなら データ保護 送信データおよび出力データをモデル学習に使用することはない (Docs) ネットワーク ワークスペースの各種ネットワークアクセス制御を適用可能
(コンテキストベースのイング レス制御、IPアクセスリスト、フロントエンドPrivate Linkなど) 契約・請求 Databricksの他に追加契約は不要、既存のDBU課金に統合 権限制御 ワークスペースへのアクセス、個人アクセストークンの利用、レート制限 (AI Gateway) によ る利用制御
利用状況の追跡・ガバナンス 可視化・制御の仕組み 機能 できること AI Gateway 使用状況監視、コスト追跡、推論テーブル (リクエスト/レスポンス全文記録)、レート制 限 システムテーブル
DBU消費量、ユーザー別利用状況の集計・分析 MLflow Tracing ツール呼び出しを含む詳細トレース、デバッグ
セットアップ手順 1. Claude Codeのインストール 2. Databricksワークスペース (基盤モデルAPIが利用可能) 3. 個人アクセストークン (PAT)
必要なもの
デモ
詳細な手順 • Claude Code + DatabricksおよびMLflowによるトレーシングのセットアップ手 順 • Claude Code
GitHub Actions + Databricksセットアップ手順 以下のQiita記事を参照ください
コストは?
モデル料金 → ほぼ同等の価格設定 ($0.07/DBU換算) Anthropic Pricing / Databricks Pricing 比較:Anthropic
APIとDatabricks基盤モデルAPI (Pay-Per-Token) モデル Input/Output Anthropic ($/MTok) Databricks (DBU/MTok) Opus 4.5 Input $5 71.4 ≒ $5 Output $25 357.1 ≒ $25 Sonnet 4.5 Input $3 42.9 ≒ $3 Output $15 214.3 ≒ $15
コスト実績 • 期間: 2026年1月5日〜23日(18日間) • モデル: Claude Opus 4.5のみ使用(Sonnetは未使用) •
使用スタイル : プログラミング、ドキュメント作成など様々な用途 • ユーザータイプ : ヘビーユーザー、毎日利用 自分自身で実験してみました
コスト実績 • 合計コスト : $500 • 合計アクティブ時間 : 45時間 •
合計ツール呼出回数 : 5,000回 自分自身で実験してみました ピーク日 (1月19日) • コスト: $74 • 時間: 4時間 • ツール呼出: 948回
参考:個人の実験結果からの大まかな推定値 使用パターン別の目安 パターン 月間利用時間 Opus 4.5 Sonnet 4.5 ライトユーザー 〜10時間(週1〜2時間)
〜$100 〜$60 ミドルユーザー 10〜30時間(週3〜7時間) $100〜300 $60〜180 ヘビーユーザー 30〜60時間(週8〜15時間) $300〜600 $180〜360
• エンタープライズ要件をクリア : データ保護、ネットワーク制御、権限管理 • ガバナンス機能が充実 : AI Gateway、システムテーブル、MLflow Tracing
• 契約・請求がシンプル : 追加契約不要、既存DBU課金に統合 まとめ Databricks基盤モデルAPIでClaude Codeを使用することで
None