Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DatabricksホストモデルでAIコーディング環境を構築する
Search
Databricks Japan
January 27, 2026
Technology
0
250
DatabricksホストモデルでAIコーディング環境を構築する
Databricks Japan
January 27, 2026
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
[Iceberg Meetup #4] ゼロからはじめる: Apache Icebergとはなにか? / Apache Iceberg for Beginners
databricksjapan
0
590
Microsoft Tech Brief : Microsoft Fabric × Databricks × Microsoft Foundry が切り拓く Agentic Analytics 革命 ― Microsoft Ignite & Databricks 社 主催 DATA+AI World Tour Tokyo 最新アップデート総括
databricksjapan
1
150
Money Forwardにおける Databricks利⽤の現状と今後の展望
databricksjapan
0
110
Databricks Lakeflow クイックワークショップ / lakeflow-workshop
databricksjapan
0
210
NEXT弥⽣を⽀えるAI‧データ基盤構想 とシルバー構築について
databricksjapan
0
69
世界をつなぐ、SEGAのグローバルデータメッシュ 〜Databricksで進化する基盤とゲーム運営〜
databricksjapan
0
190
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
300
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
2
390
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
440
Other Decks in Technology
See All in Technology
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
560
Webhook best practices for rock solid and resilient deployments
glaforge
1
270
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
データ民主化のための LLM 活用状況と課題紹介(IVRy の場合)
wxyzzz
2
670
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
440
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
Agile Leadership Summit Keynote 2026
m_seki
1
480
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
340
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
600
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
180
Tebiki Engineering Team Deck
tebiki
0
24k
Deno・Bunの標準機能やElysiaJSを使ったWebSocketサーバー実装 / ラーメン屋を貸し切ってLT会! IoTLT 2026新年会
you
PRO
0
300
Featured
See All Featured
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Design in an AI World
tapps
0
140
WCS-LA-2024
lcolladotor
0
450
How STYLIGHT went responsive
nonsquared
100
6k
Skip the Path - Find Your Career Trail
mkilby
0
53
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
160
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
320
GraphQLとの向き合い方2022年版
quramy
50
14k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Facilitating Awesome Meetings
lara
57
6.7k
Six Lessons from altMBA
skipperchong
29
4.1k
Transcript
Databricksホストモデルで AIコーディング環境を 構築する JEDAI 2026 新春 Meetup! AIコーディング特集 2026年1月27日 データブリックス・ジャパン株式会社
中里 浩之 (シニア スペシャリストSA)
🤲 AIコーディングツール 使ってますか?
AIコーディングツール • Claude Code - Anthropicのターミナルベースのエージェント型 • Codex - OpenAIのマルチプラットフォーム対応エージェント
• Cursor - VSCodeフォークのAI特化型エディタ • Gemini CLI - GoogleのOSS・ターミナルベースのエージェント型 • Goose - Block社のOSS・エージェントフレームワーク • Cline - VSCode拡張のエージェント型 様々なツールが登場
Claude Codeとは • ターミナル上 で動作 • コードの読み書きやコマンド実行 が可能 • 会話形式でコーディングをはじめとしたあらゆる作業
を支援 • モデルはClaude Opus / Sonnetを使用 Anthropic公式のAIコーディングツール
DatabricksホストのClaude利用のメリット エンタープライズ利用の障壁をクリア 観点 Databricks基盤モデル APIなら データ保護 送信データおよび出力データをモデル学習に使用することはない (Docs) ネットワーク ワークスペースの各種ネットワークアクセス制御を適用可能
(コンテキストベースのイング レス制御、IPアクセスリスト、フロントエンドPrivate Linkなど) 契約・請求 Databricksの他に追加契約は不要、既存のDBU課金に統合 権限制御 ワークスペースへのアクセス、個人アクセストークンの利用、レート制限 (AI Gateway) によ る利用制御
利用状況の追跡・ガバナンス 可視化・制御の仕組み 機能 できること AI Gateway 使用状況監視、コスト追跡、推論テーブル (リクエスト/レスポンス全文記録)、レート制 限 システムテーブル
DBU消費量、ユーザー別利用状況の集計・分析 MLflow Tracing ツール呼び出しを含む詳細トレース、デバッグ
セットアップ手順 1. Claude Codeのインストール 2. Databricksワークスペース (基盤モデルAPIが利用可能) 3. 個人アクセストークン (PAT)
必要なもの
デモ
詳細な手順 • Claude Code + DatabricksおよびMLflowによるトレーシングのセットアップ手 順 • Claude Code
GitHub Actions + Databricksセットアップ手順 以下のQiita記事を参照ください
コストは?
モデル料金 → ほぼ同等の価格設定 ($0.07/DBU換算) Anthropic Pricing / Databricks Pricing 比較:Anthropic
APIとDatabricks基盤モデルAPI (Pay-Per-Token) モデル Input/Output Anthropic ($/MTok) Databricks (DBU/MTok) Opus 4.5 Input $5 71.4 ≒ $5 Output $25 357.1 ≒ $25 Sonnet 4.5 Input $3 42.9 ≒ $3 Output $15 214.3 ≒ $15
コスト実績 • 期間: 2026年1月5日〜23日(18日間) • モデル: Claude Opus 4.5のみ使用(Sonnetは未使用) •
使用スタイル : プログラミング、ドキュメント作成など様々な用途 • ユーザータイプ : ヘビーユーザー、毎日利用 自分自身で実験してみました
コスト実績 • 合計コスト : $500 • 合計アクティブ時間 : 45時間 •
合計ツール呼出回数 : 5,000回 自分自身で実験してみました ピーク日 (1月19日) • コスト: $74 • 時間: 4時間 • ツール呼出: 948回
参考:個人の実験結果からの大まかな推定値 使用パターン別の目安 パターン 月間利用時間 Opus 4.5 Sonnet 4.5 ライトユーザー 〜10時間(週1〜2時間)
〜$100 〜$60 ミドルユーザー 10〜30時間(週3〜7時間) $100〜300 $60〜180 ヘビーユーザー 30〜60時間(週8〜15時間) $300〜600 $180〜360
• エンタープライズ要件をクリア : データ保護、ネットワーク制御、権限管理 • ガバナンス機能が充実 : AI Gateway、システムテーブル、MLflow Tracing
• 契約・請求がシンプル : 追加契約不要、既存DBU課金に統合 まとめ Databricks基盤モデルAPIでClaude Codeを使用することで
None