Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
emcee
Search
Dan Foreman-Mackey
July 20, 2012
Science
2
650
emcee
Some intro slides for Python lunch at MPIA.
Dan Foreman-Mackey
July 20, 2012
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
140
Open Software for Astrophysics, AAS241
dfm
2
530
My research talk for CCA promotion
dfm
1
770
Astronomical software
dfm
1
730
emcee-odi
dfm
1
660
Exoplanet population inference: a tutorial
dfm
3
450
Data-driven discovery in the astronomical time domain
dfm
6
710
TensorFlow for astronomers
dfm
6
800
How to find a transiting exoplanets
dfm
1
460
Other Decks in Science
See All in Science
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.2k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
280
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
510
データベース03: 関係データモデル
trycycle
PRO
1
120
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
950
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
690
機械学習 - SVM
trycycle
PRO
1
850
統計学入門講座 第3回スライド
techmathproject
0
110
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
300
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
190
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
180
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
410
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
695
190k
Typedesign – Prime Four
hannesfritz
42
2.7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Designing Experiences People Love
moore
142
24k
A designer walks into a library…
pauljervisheath
207
24k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Why Our Code Smells
bkeepers
PRO
336
57k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Embracing the Ebb and Flow
colly
86
4.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Transcript
emcee danfm.ca/emcee p(⇥) I have a function
emcee danfm.ca/emcee p(⇥) I have a function I can Evaluate
it
emcee danfm.ca/emcee p(⇥) I have a function I can Evaluate
it I can't Calculate the functional form
emcee danfm.ca/emcee p(⇥) I have a function I can Evaluate
it I can't Calculate the functional form Markov chain Monte Carlo (MCMC)
emcee danfm.ca/emcee Metropolis-Hastings
emcee danfm.ca/emcee min ✓ 1 , p ( x 0)
p ( x ) Q ( x ; x 0) Q ( x 0; x ) ◆ Metropolis-Hastings
emcee danfm.ca/emcee min ✓ 1 , p ( x 0)
p ( x ) Q ( x ; x 0) Q ( x 0; x ) ◆ Metropolis-Hastings Proposal D (D-1) parameters
emcee danfm.ca/emcee Metropolis-Hastings x y
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world) min
✓ 1, p (x 0 ) p (x ) Q (x ;x 0 ) Q (x 0 ;x ) ◆ ?
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world) min
✓ 1 , p( x 0 ) p( x) Q( x; x 0 ) Q( x 0; x) ◆ ?
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y SMALL
ACCEPTANCE FRACTION the problem
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y LARGE
ACCEPTANCE FRACTION the problem
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world)
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world)
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world)
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) positive-definite
symmetric Proposal D (D-1) parameters
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) positive-definite
symmetric Proposal D (D-1) parameters This is the Dimension of your parameter space!
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) Scientific Awesomeness how
hard is MCMC Metropolis Hastings how things Should be (~number of parameters)
emcee danfm.ca/emcee Why does all this matter?
emcee danfm.ca/emcee How do you calculate the optimal proposal?
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature time
emcee danfm.ca/emcee Temperature that should be spent interpreting your results
writing papers finding bugs in your code time
emcee danfm.ca/emcee Luckily I have a solution!
emcee danfm.ca/emcee Luckily I have a solution! HINT: it's up
here...
emcee danfm.ca/emcee bit.ly/mcmc-gw10 "Ensemble samplers with affine invariance" Jonathan Goodman
Jonathan Weare Mustaches courtesy: mustachify.me
emcee danfm.ca/emcee bit.ly/mcmc-gw10 "Ensemble samplers with affine invariance" Jonathan Goodman
Jonathan Weare Mustaches courtesy: mustachify.me
emcee danfm.ca/emcee bit.ly/mcmc-gw10 "Ensemble samplers with affine invariance" Jonathan Goodman
Jonathan Weare Mustaches courtesy: mustachify.me
emcee danfm.ca/emcee affine invariance
emcee danfm.ca/emcee affine invariance y A x + b Affine
Transformation
emcee danfm.ca/emcee affine invariance The sampler performs Equally well on
X and Y y A x + b Affine Transformation
emcee danfm.ca/emcee Easy to sample Hard to sample
emcee danfm.ca/emcee Easy to sample Hard to sample y A
x + b Affine Transformation
emcee danfm.ca/emcee Easy to sample Hard to sample y A
x + b Affine Transformation easy!
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance this is a walker
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance this is a walker
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance min ✓ 1,Z D 1 p (x 0 ) p (x ) ◆
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance min ✓ 1,Z D 1 p (x 0 ) p (x ) ◆
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance Aside: this looks nice and parallel, eh? * * not quite as trivial as you might hope—but possible!
emcee danfm.ca/emcee +
emcee danfm.ca/emcee it's hammer time! emceethe MCMC Hammer introducing arxiv.org/abs/1202.3665
emcee danfm.ca/emcee pip install emcee get it:
emcee danfm.ca/emcee import numpy as np import emcee def lnprob(x):
return -0.5 * np.sum(x ** 2) ndim, nwalkers = 10, 100 p0 = [np.random.rand(ndim) for i in range(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob) sampler.run_mcmc(p0, 1000) use it:
emcee danfm.ca/emcee DOES IT WORK? obviously it does.
emcee danfm.ca/emcee 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0
0.5 1.0 exp ✓ (x1 x2) 2 2 ✏ (x1 + x2) 2 2 ◆
emcee danfm.ca/emcee github.com/dfm/acor Autocorrelation Function the (covariance)
emcee danfm.ca/emcee 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0
0.5 1.0 exp ✓ (x1 x2) 2 2 ✏ (x1 + x2) 2 2 ◆ Metropolis-Hastings Emcee Autocorrelation Function the
emcee danfm.ca/emcee 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0
0.5 1.0 exp ✓ (x1 x2) 2 2 ✏ (x1 + x2) 2 2 ◆ Metropolis-Hastings Emcee Autocorrelation Function the
emcee danfm.ca/emcee 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0
0.5 1.0 exp ✓ (x1 x2) 2 2 ✏ (x1 + x2) 2 2 ◆ Metropolis-Hastings Emcee Autocorrelation Function the
emcee danfm.ca/emcee Metropolis-Hastings Boom!
emcee danfm.ca/emcee 4 2 0 2 4 6 0 5
10 15 20 25 30 exp ✓ 100 (x2 x 2 1) 2 + (1 x1) 2 20 ◆
4 2 0 2 4 6 0 5 10 15
20 25 30 exp ✓ 100 (x2 x 2 1) 2 + (1 x1) 2 20 ◆ emcee danfm.ca/emcee Metropolis-Hastings Emcee Autocorrelation Function the
emcee isn't always The Right Choice™ emcee danfm.ca/emcee Mustache courtesy:
mustachify.me Brendon Brewer Remember:
emcee danfm.ca/emcee Mustache courtesy: mustachify.me continuous parameters in a vector
space emcee needs highly multimodal problems and it is not good at
emcee danfm.ca/emcee Mustache courtesy: mustachify.me continuous parameters in a vector
space emcee needs highly multimodal problems and it is not good at what is?
emcee danfm.ca/emcee Mustache courtesy: mustachify.me continuous parameters in a vector
space emcee needs highly multimodal problems and it is not good at what is? maybe Dnest github.com/eggplantbren/DNest3
emcee danfm.ca/emcee Mustache courtesy: mustachify.me continuous parameters in a vector
space emcee needs highly multimodal problems and it is not good at what is? maybe Dnest github.com/eggplantbren/DNest3 for example
emcee danfm.ca/emcee it's still been pretty useful... Lang & Hogg
(2011) Bovy et al. (2011) Dorman et al. (2012) Foreman-Mackey & Widrow (in prep) Mustaches courtesy: mustachify.me ... ... ...
emceethe MCMC Hammer arxiv.org/abs/1202.3665 danfm.ca/emcee github.com/dfm/emcee paper documentation issues/contributions Check
it out: Dustin Lang (Princeton) David W. Hogg (NYU) Jonathan Goodman (NYU)