Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
emcee
Search
Dan Foreman-Mackey
July 20, 2012
Science
2
660
emcee
Some intro slides for Python lunch at MPIA.
Dan Foreman-Mackey
July 20, 2012
Tweet
Share
More Decks by Dan Foreman-Mackey
See All by Dan Foreman-Mackey
Open software for Astronomical Data Analysis
dfm
0
150
Open Software for Astrophysics, AAS241
dfm
2
540
My research talk for CCA promotion
dfm
1
780
Astronomical software
dfm
1
740
emcee-odi
dfm
1
670
Exoplanet population inference: a tutorial
dfm
3
460
Data-driven discovery in the astronomical time domain
dfm
6
720
TensorFlow for astronomers
dfm
6
820
How to find a transiting exoplanets
dfm
1
470
Other Decks in Science
See All in Science
データベース01: データベースを使わない世界
trycycle
PRO
1
780
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
260
研究って何だっけ / What is Research?
ks91
PRO
1
120
傾向スコアによる効果検証 / Propensity Score Analysis and Causal Effect Estimation
ikuma_w
0
130
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
990
mathematics of indirect reciprocity
yohm
1
180
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
600
Symfony Console Facelift
chalasr
2
470
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.3k
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
350
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
4
630
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
Six Lessons from altMBA
skipperchong
28
4k
KATA
mclloyd
32
14k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
Producing Creativity
orderedlist
PRO
347
40k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Transcript
emcee danfm.ca/emcee p(⇥) I have a function
emcee danfm.ca/emcee p(⇥) I have a function I can Evaluate
it
emcee danfm.ca/emcee p(⇥) I have a function I can Evaluate
it I can't Calculate the functional form
emcee danfm.ca/emcee p(⇥) I have a function I can Evaluate
it I can't Calculate the functional form Markov chain Monte Carlo (MCMC)
emcee danfm.ca/emcee Metropolis-Hastings
emcee danfm.ca/emcee min ✓ 1 , p ( x 0)
p ( x ) Q ( x ; x 0) Q ( x 0; x ) ◆ Metropolis-Hastings
emcee danfm.ca/emcee min ✓ 1 , p ( x 0)
p ( x ) Q ( x ; x 0) Q ( x 0; x ) ◆ Metropolis-Hastings Proposal D (D-1) parameters
emcee danfm.ca/emcee Metropolis-Hastings x y
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world) min
✓ 1, p (x 0 ) p (x ) Q (x ;x 0 ) Q (x 0 ;x ) ◆ ?
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world) min
✓ 1 , p( x 0 ) p( x) Q( x; x 0 ) Q( x 0; x) ◆ ?
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings x y (in an ideal world)
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y SMALL
ACCEPTANCE FRACTION the problem
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) x y LARGE
ACCEPTANCE FRACTION the problem
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world)
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world)
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world)
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) positive-definite
symmetric Proposal D (D-1) parameters
x y emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) positive-definite
symmetric Proposal D (D-1) parameters This is the Dimension of your parameter space!
emcee danfm.ca/emcee Metropolis-Hastings (in the REAL world) Scientific Awesomeness how
hard is MCMC Metropolis Hastings how things Should be (~number of parameters)
emcee danfm.ca/emcee Why does all this matter?
emcee danfm.ca/emcee How do you calculate the optimal proposal?
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature
emcee danfm.ca/emcee Temperature time
emcee danfm.ca/emcee Temperature that should be spent interpreting your results
writing papers finding bugs in your code time
emcee danfm.ca/emcee Luckily I have a solution!
emcee danfm.ca/emcee Luckily I have a solution! HINT: it's up
here...
emcee danfm.ca/emcee bit.ly/mcmc-gw10 "Ensemble samplers with affine invariance" Jonathan Goodman
Jonathan Weare Mustaches courtesy: mustachify.me
emcee danfm.ca/emcee bit.ly/mcmc-gw10 "Ensemble samplers with affine invariance" Jonathan Goodman
Jonathan Weare Mustaches courtesy: mustachify.me
emcee danfm.ca/emcee bit.ly/mcmc-gw10 "Ensemble samplers with affine invariance" Jonathan Goodman
Jonathan Weare Mustaches courtesy: mustachify.me
emcee danfm.ca/emcee affine invariance
emcee danfm.ca/emcee affine invariance y A x + b Affine
Transformation
emcee danfm.ca/emcee affine invariance The sampler performs Equally well on
X and Y y A x + b Affine Transformation
emcee danfm.ca/emcee Easy to sample Hard to sample
emcee danfm.ca/emcee Easy to sample Hard to sample y A
x + b Affine Transformation
emcee danfm.ca/emcee Easy to sample Hard to sample y A
x + b Affine Transformation easy!
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance this is a walker
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance this is a walker
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance min ✓ 1,Z D 1 p (x 0 ) p (x ) ◆
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance min ✓ 1,Z D 1 p (x 0 ) p (x ) ◆
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance
emcee danfm.ca/emcee Ensemble Samplers (in the REAL world) x y
with affine invariance Aside: this looks nice and parallel, eh? * * not quite as trivial as you might hope—but possible!
emcee danfm.ca/emcee +
emcee danfm.ca/emcee it's hammer time! emceethe MCMC Hammer introducing arxiv.org/abs/1202.3665
emcee danfm.ca/emcee pip install emcee get it:
emcee danfm.ca/emcee import numpy as np import emcee def lnprob(x):
return -0.5 * np.sum(x ** 2) ndim, nwalkers = 10, 100 p0 = [np.random.rand(ndim) for i in range(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob) sampler.run_mcmc(p0, 1000) use it:
emcee danfm.ca/emcee DOES IT WORK? obviously it does.
emcee danfm.ca/emcee 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0
0.5 1.0 exp ✓ (x1 x2) 2 2 ✏ (x1 + x2) 2 2 ◆
emcee danfm.ca/emcee github.com/dfm/acor Autocorrelation Function the (covariance)
emcee danfm.ca/emcee 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0
0.5 1.0 exp ✓ (x1 x2) 2 2 ✏ (x1 + x2) 2 2 ◆ Metropolis-Hastings Emcee Autocorrelation Function the
emcee danfm.ca/emcee 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0
0.5 1.0 exp ✓ (x1 x2) 2 2 ✏ (x1 + x2) 2 2 ◆ Metropolis-Hastings Emcee Autocorrelation Function the
emcee danfm.ca/emcee 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0
0.5 1.0 exp ✓ (x1 x2) 2 2 ✏ (x1 + x2) 2 2 ◆ Metropolis-Hastings Emcee Autocorrelation Function the
emcee danfm.ca/emcee Metropolis-Hastings Boom!
emcee danfm.ca/emcee 4 2 0 2 4 6 0 5
10 15 20 25 30 exp ✓ 100 (x2 x 2 1) 2 + (1 x1) 2 20 ◆
4 2 0 2 4 6 0 5 10 15
20 25 30 exp ✓ 100 (x2 x 2 1) 2 + (1 x1) 2 20 ◆ emcee danfm.ca/emcee Metropolis-Hastings Emcee Autocorrelation Function the
emcee isn't always The Right Choice™ emcee danfm.ca/emcee Mustache courtesy:
mustachify.me Brendon Brewer Remember:
emcee danfm.ca/emcee Mustache courtesy: mustachify.me continuous parameters in a vector
space emcee needs highly multimodal problems and it is not good at
emcee danfm.ca/emcee Mustache courtesy: mustachify.me continuous parameters in a vector
space emcee needs highly multimodal problems and it is not good at what is?
emcee danfm.ca/emcee Mustache courtesy: mustachify.me continuous parameters in a vector
space emcee needs highly multimodal problems and it is not good at what is? maybe Dnest github.com/eggplantbren/DNest3
emcee danfm.ca/emcee Mustache courtesy: mustachify.me continuous parameters in a vector
space emcee needs highly multimodal problems and it is not good at what is? maybe Dnest github.com/eggplantbren/DNest3 for example
emcee danfm.ca/emcee it's still been pretty useful... Lang & Hogg
(2011) Bovy et al. (2011) Dorman et al. (2012) Foreman-Mackey & Widrow (in prep) Mustaches courtesy: mustachify.me ... ... ...
emceethe MCMC Hammer arxiv.org/abs/1202.3665 danfm.ca/emcee github.com/dfm/emcee paper documentation issues/contributions Check
it out: Dustin Lang (Princeton) David W. Hogg (NYU) Jonathan Goodman (NYU)