Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NeurIPS 2021 論文読み会: How Modular should Neural M...
Search
Atsushi Takayama
January 25, 2022
Technology
0
170
NeurIPS 2021 論文読み会: How Modular should Neural Module Networks Be for Systematic Generalization?
Atsushi Takayama
January 25, 2022
Tweet
Share
More Decks by Atsushi Takayama
See All by Atsushi Takayama
最高の開発者体験の追求が開発生産性を改善し続ける文化を生み出した話
edvakf
3
1.3k
8年物のJavaのシステムをKotlinに変えていく選択に至るまで
edvakf
2
1.1k
ピクシブ社内のImageFlux利用事例紹介
edvakf
1
2.8k
学びの文化を育む社内読書会のススメ
edvakf
0
270
フルCDNアーキテクチャでサービス設計した話
edvakf
5
3.9k
Goでバイナリを読む+α
edvakf
1
950
お前はこれまでに作ったAPIの数を覚えているのか?
edvakf
0
2.5k
「ふつうのRailsアプリケーション」についての考え方
edvakf
2
840
ggplot.galleryというお遊びウェブアプリケーションを作った話
edvakf
0
410
Other Decks in Technology
See All in Technology
AIとともに進化するエンジニアリング / Engineering-Evolving-with-AI_final.pdf
lycorptech_jp
PRO
0
160
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
18
6.5k
PO初心者が考えた ”POらしさ”
nb_rady
0
190
2025-07-06 QGIS初級ハンズオン「はじめてのQGIS」
kou_kita
0
160
LangChain Interrupt & LangChain Ambassadors meetingレポート
os1ma
2
290
Connect 100+を支える技術
kanyamaguc
0
190
本が全く読めなかった過去の自分へ
genshun9
0
910
KubeCon + CloudNativeCon Japan 2025 Recap by CA
ponkio_o
PRO
0
290
ビズリーチが挑む メトリクスを活用した技術的負債の解消 / dev-productivity-con2025
visional_engineering_and_design
3
6.7k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
100
United Airlines Customer Service– Call 1-833-341-3142 Now!
airhelp
0
160
Model Mondays S2E03: SLMs & Reasoning
nitya
0
350
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
Facilitating Awesome Meetings
lara
54
6.4k
For a Future-Friendly Web
brad_frost
179
9.8k
What's in a price? How to price your products and services
michaelherold
246
12k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Testing 201, or: Great Expectations
jmmastey
42
7.6k
RailsConf 2023
tenderlove
30
1.1k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Why Our Code Smells
bkeepers
PRO
337
57k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Transcript
How Modular should Neural Module Networks Be for Systematic Generalization?
高山温 @ NewsPicks (Uzabase group) NeurIPS 2021 論文読み会 2022/01/25
自己紹介 • Atsushi Takayama / 高山温 • 2020年からNewsPicksでCTOをしていまし たが、今年からFellowしてます ◦
データ基盤、データ分析、レコメンドエンジン、検 索エンジンなどのチームを率いています • 大学中退 → 大学院中退 → 大学院生(イマココ) ◦ 元々物理をやっていましたが、今はコンピュータサ イエンスを勉強中 • 宣伝: ユーザベースはエンジニアの多様な キャリアと多様な成長を応援する会社です
Table of Contents • VQAとは • この研究の位置付け • 研究内容 •
結果 • 所感
VQA (Visual Question Answering) • since 2015 ◦ 画像を与えられて質問に答える問題 •
2021年に人間並みの精度になった ◦ Microsoft, Alibabaなど ▪ pre-trained attention-based models 人間 95.49 80.84 67.89 80.78
この研究の位置付け 1 • SOTAとは別方向で、「少ない例で学習して、 どれだけ類似の質問に答えられるか」という 問題設定がある • 右のような例で、人間なら少し学習しただけ で類似の質問にも答えられる ◦
Systematic Generalizationという
この研究の位置付け 2 NMN: Neural Modular Networks 質問文をパースしてネットワークを構築 →少し学習しただけでそこそこ強い FiLM: End-to-Endで微分可能なネットワーク
→大量に学習しないと強くない
この研究の位置付け 3 • NMNを詳しく研究したら何かおもしろいことがわかるのでは? ◦ 例えば、End-to-Endのモデルで「質問文の構造」を学習するような機構を取り入れられな いか、とか ◦ VQAだけでなく画像認識でも Systematic
Generalizationを上げるにはどうすればいい か、とか
• 下のような画像と質問1〜3があるとする ◦ 1と2は色に関する質問、 3は文字に関する質問 • 論文のタイトル “How Modular Should
Neural Networks Be” は次 のようなイメージ ◦ 左: 全部の質問に対応できるネットワークを学習する (最もModularityが低い) ◦ 中央: 色とカテゴリーというグループごとにネットワークを学習する ◦ 右: 各質問ごとに別々のネットワークを学習する (最もModularityが高い) 研究内容 1
研究内容 2 • 少し複雑な質問でも、同様にsub-taskに分解して、Modularityが高い ネットワークから低いネットワークまでのパターンを作る
結果 1 • グラフ(a)〜(d) ◦ 質問の種類 • 横軸 ◦ 全体の何割のデータで学
習したか • 縦軸 ◦ 学習に登場しなかった類 似の質問の正答率 • 4色のバー ◦ 右に行くにつれて Modularityが高い
結果 2 • 他にも色んなデータセットで検証 • やっぱりModularityは効く (結果は割愛)
所感 • ここまで書いていて、富士通さんのテックブ ログに解説が載ってるのに気づきました • 実はまったく知らない分野でしたが、締め切 り駆動で10本ぐらい読んでみると多くのこと が学べました。誘っていただき感謝 https://blog.fltech.dev/entry/2021/12/09/neurips2021-ja