Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NeurIPS 2021 論文読み会: How Modular should Neural M...
Search
Atsushi Takayama
January 25, 2022
Technology
0
170
NeurIPS 2021 論文読み会: How Modular should Neural Module Networks Be for Systematic Generalization?
Atsushi Takayama
January 25, 2022
Tweet
Share
More Decks by Atsushi Takayama
See All by Atsushi Takayama
最高の開発者体験の追求が開発生産性を改善し続ける文化を生み出した話
edvakf
3
1.2k
8年物のJavaのシステムをKotlinに変えていく選択に至るまで
edvakf
2
1.1k
ピクシブ社内のImageFlux利用事例紹介
edvakf
1
2.8k
学びの文化を育む社内読書会のススメ
edvakf
0
270
フルCDNアーキテクチャでサービス設計した話
edvakf
5
3.9k
Goでバイナリを読む+α
edvakf
1
940
お前はこれまでに作ったAPIの数を覚えているのか?
edvakf
0
2.5k
「ふつうのRailsアプリケーション」についての考え方
edvakf
2
840
ggplot.galleryというお遊びウェブアプリケーションを作った話
edvakf
0
400
Other Decks in Technology
See All in Technology
Create a Rails8 responsive app with Gemini and RubyLLM
palladius
0
110
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
290
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
6.4k
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
17k
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.2k
比起獨自升級 我更喜歡 DevOps 文化 <3
line_developers_tw
PRO
0
150
AIにどこまで任せる?実務で使える(かもしれない)AIエージェント設計の考え方
har1101
3
1k
CIでのgolangci-lintの実行を約90%削減した話
kazukihayase
0
200
菸酒生在 LINE Taiwan 的後端雙刀流
line_developers_tw
PRO
0
140
VCpp Link and Library - C++ breaktime 2025 Summer
harukasao
0
150
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
43
25k
生成AIをテストプロセスに活用し"よう"としている話 #jasstnano
makky_tyuyan
0
150
Featured
See All Featured
A designer walks into a library…
pauljervisheath
206
24k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Optimizing for Happiness
mojombo
379
70k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Visualization
eitanlees
146
16k
The Invisible Side of Design
smashingmag
299
51k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.5k
Facilitating Awesome Meetings
lara
54
6.4k
Done Done
chrislema
184
16k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Transcript
How Modular should Neural Module Networks Be for Systematic Generalization?
高山温 @ NewsPicks (Uzabase group) NeurIPS 2021 論文読み会 2022/01/25
自己紹介 • Atsushi Takayama / 高山温 • 2020年からNewsPicksでCTOをしていまし たが、今年からFellowしてます ◦
データ基盤、データ分析、レコメンドエンジン、検 索エンジンなどのチームを率いています • 大学中退 → 大学院中退 → 大学院生(イマココ) ◦ 元々物理をやっていましたが、今はコンピュータサ イエンスを勉強中 • 宣伝: ユーザベースはエンジニアの多様な キャリアと多様な成長を応援する会社です
Table of Contents • VQAとは • この研究の位置付け • 研究内容 •
結果 • 所感
VQA (Visual Question Answering) • since 2015 ◦ 画像を与えられて質問に答える問題 •
2021年に人間並みの精度になった ◦ Microsoft, Alibabaなど ▪ pre-trained attention-based models 人間 95.49 80.84 67.89 80.78
この研究の位置付け 1 • SOTAとは別方向で、「少ない例で学習して、 どれだけ類似の質問に答えられるか」という 問題設定がある • 右のような例で、人間なら少し学習しただけ で類似の質問にも答えられる ◦
Systematic Generalizationという
この研究の位置付け 2 NMN: Neural Modular Networks 質問文をパースしてネットワークを構築 →少し学習しただけでそこそこ強い FiLM: End-to-Endで微分可能なネットワーク
→大量に学習しないと強くない
この研究の位置付け 3 • NMNを詳しく研究したら何かおもしろいことがわかるのでは? ◦ 例えば、End-to-Endのモデルで「質問文の構造」を学習するような機構を取り入れられな いか、とか ◦ VQAだけでなく画像認識でも Systematic
Generalizationを上げるにはどうすればいい か、とか
• 下のような画像と質問1〜3があるとする ◦ 1と2は色に関する質問、 3は文字に関する質問 • 論文のタイトル “How Modular Should
Neural Networks Be” は次 のようなイメージ ◦ 左: 全部の質問に対応できるネットワークを学習する (最もModularityが低い) ◦ 中央: 色とカテゴリーというグループごとにネットワークを学習する ◦ 右: 各質問ごとに別々のネットワークを学習する (最もModularityが高い) 研究内容 1
研究内容 2 • 少し複雑な質問でも、同様にsub-taskに分解して、Modularityが高い ネットワークから低いネットワークまでのパターンを作る
結果 1 • グラフ(a)〜(d) ◦ 質問の種類 • 横軸 ◦ 全体の何割のデータで学
習したか • 縦軸 ◦ 学習に登場しなかった類 似の質問の正答率 • 4色のバー ◦ 右に行くにつれて Modularityが高い
結果 2 • 他にも色んなデータセットで検証 • やっぱりModularityは効く (結果は割愛)
所感 • ここまで書いていて、富士通さんのテックブ ログに解説が載ってるのに気づきました • 実はまったく知らない分野でしたが、締め切 り駆動で10本ぐらい読んでみると多くのこと が学べました。誘っていただき感謝 https://blog.fltech.dev/entry/2021/12/09/neurips2021-ja