Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NeurIPS 2021 論文読み会: How Modular should Neural M...
Search
Atsushi Takayama
January 25, 2022
Technology
0
190
NeurIPS 2021 論文読み会: How Modular should Neural Module Networks Be for Systematic Generalization?
Atsushi Takayama
January 25, 2022
Tweet
Share
More Decks by Atsushi Takayama
See All by Atsushi Takayama
最高の開発者体験の追求が開発生産性を改善し続ける文化を生み出した話
edvakf
3
1.4k
8年物のJavaのシステムをKotlinに変えていく選択に至るまで
edvakf
2
1.1k
ピクシブ社内のImageFlux利用事例紹介
edvakf
2
2.9k
学びの文化を育む社内読書会のススメ
edvakf
0
300
フルCDNアーキテクチャでサービス設計した話
edvakf
5
4k
Goでバイナリを読む+α
edvakf
1
980
お前はこれまでに作ったAPIの数を覚えているのか?
edvakf
0
2.7k
「ふつうのRailsアプリケーション」についての考え方
edvakf
2
900
ggplot.galleryというお遊びウェブアプリケーションを作った話
edvakf
0
420
Other Decks in Technology
See All in Technology
Claude Codeを使った情報整理術
knishioka
1
320
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
240
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
180
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
500
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
190
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
490
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
200
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
4
2k
株式会社ビザスク_AI__Engineering_Summit_Tokyo_2025_登壇資料.pdf
eikohashiba
1
110
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.6k
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.8k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
760
Featured
See All Featured
Mind Mapping
helmedeiros
PRO
0
39
The Mindset for Success: Future Career Progression
greggifford
PRO
0
190
Darren the Foodie - Storyboard
khoart
PRO
0
1.9k
Odyssey Design
rkendrick25
PRO
0
430
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
0
22
Chasing Engaging Ingredients in Design
codingconduct
0
84
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Bash Introduction
62gerente
615
210k
The Limits of Empathy - UXLibs8
cassininazir
1
190
It's Worth the Effort
3n
187
29k
Docker and Python
trallard
47
3.7k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
Transcript
How Modular should Neural Module Networks Be for Systematic Generalization?
高山温 @ NewsPicks (Uzabase group) NeurIPS 2021 論文読み会 2022/01/25
自己紹介 • Atsushi Takayama / 高山温 • 2020年からNewsPicksでCTOをしていまし たが、今年からFellowしてます ◦
データ基盤、データ分析、レコメンドエンジン、検 索エンジンなどのチームを率いています • 大学中退 → 大学院中退 → 大学院生(イマココ) ◦ 元々物理をやっていましたが、今はコンピュータサ イエンスを勉強中 • 宣伝: ユーザベースはエンジニアの多様な キャリアと多様な成長を応援する会社です
Table of Contents • VQAとは • この研究の位置付け • 研究内容 •
結果 • 所感
VQA (Visual Question Answering) • since 2015 ◦ 画像を与えられて質問に答える問題 •
2021年に人間並みの精度になった ◦ Microsoft, Alibabaなど ▪ pre-trained attention-based models 人間 95.49 80.84 67.89 80.78
この研究の位置付け 1 • SOTAとは別方向で、「少ない例で学習して、 どれだけ類似の質問に答えられるか」という 問題設定がある • 右のような例で、人間なら少し学習しただけ で類似の質問にも答えられる ◦
Systematic Generalizationという
この研究の位置付け 2 NMN: Neural Modular Networks 質問文をパースしてネットワークを構築 →少し学習しただけでそこそこ強い FiLM: End-to-Endで微分可能なネットワーク
→大量に学習しないと強くない
この研究の位置付け 3 • NMNを詳しく研究したら何かおもしろいことがわかるのでは? ◦ 例えば、End-to-Endのモデルで「質問文の構造」を学習するような機構を取り入れられな いか、とか ◦ VQAだけでなく画像認識でも Systematic
Generalizationを上げるにはどうすればいい か、とか
• 下のような画像と質問1〜3があるとする ◦ 1と2は色に関する質問、 3は文字に関する質問 • 論文のタイトル “How Modular Should
Neural Networks Be” は次 のようなイメージ ◦ 左: 全部の質問に対応できるネットワークを学習する (最もModularityが低い) ◦ 中央: 色とカテゴリーというグループごとにネットワークを学習する ◦ 右: 各質問ごとに別々のネットワークを学習する (最もModularityが高い) 研究内容 1
研究内容 2 • 少し複雑な質問でも、同様にsub-taskに分解して、Modularityが高い ネットワークから低いネットワークまでのパターンを作る
結果 1 • グラフ(a)〜(d) ◦ 質問の種類 • 横軸 ◦ 全体の何割のデータで学
習したか • 縦軸 ◦ 学習に登場しなかった類 似の質問の正答率 • 4色のバー ◦ 右に行くにつれて Modularityが高い
結果 2 • 他にも色んなデータセットで検証 • やっぱりModularityは効く (結果は割愛)
所感 • ここまで書いていて、富士通さんのテックブ ログに解説が載ってるのに気づきました • 実はまったく知らない分野でしたが、締め切 り駆動で10本ぐらい読んでみると多くのこと が学べました。誘っていただき感謝 https://blog.fltech.dev/entry/2021/12/09/neurips2021-ja