Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NeurIPS 2021 論文読み会: How Modular should Neural M...
Search
Atsushi Takayama
January 25, 2022
Technology
0
180
NeurIPS 2021 論文読み会: How Modular should Neural Module Networks Be for Systematic Generalization?
Atsushi Takayama
January 25, 2022
Tweet
Share
More Decks by Atsushi Takayama
See All by Atsushi Takayama
最高の開発者体験の追求が開発生産性を改善し続ける文化を生み出した話
edvakf
3
1.4k
8年物のJavaのシステムをKotlinに変えていく選択に至るまで
edvakf
2
1.1k
ピクシブ社内のImageFlux利用事例紹介
edvakf
2
2.9k
学びの文化を育む社内読書会のススメ
edvakf
0
290
フルCDNアーキテクチャでサービス設計した話
edvakf
5
4k
Goでバイナリを読む+α
edvakf
1
970
お前はこれまでに作ったAPIの数を覚えているのか?
edvakf
0
2.6k
「ふつうのRailsアプリケーション」についての考え方
edvakf
2
890
ggplot.galleryというお遊びウェブアプリケーションを作った話
edvakf
0
410
Other Decks in Technology
See All in Technology
Pythonで構築する全国市町村ナレッジグラフ: GraphRAGを用いた意味的地域検索への応用
negi111111
8
3.4k
[mercari GEARS 2025] Keynote
mercari
PRO
0
170
ZOZOTOWNカート決済リプレイス ── モジュラモノリスという過渡期戦略
zozotech
PRO
0
150
仕様駆動 x Codex で 超効率開発
ismk
2
1.4k
決済システムの信頼性を支える技術と運用の実践
ykagano
0
500
Data & AIの未来とLakeHouse
ishikawa_satoru
0
720
[CV勉強会@関東 ICCV2025] WoTE: End-to-End Driving with Online Trajectory Evaluation via BEV World Model
shinkyoto
0
160
ステートレスなLLMでステートフルなAI agentを作る - YAPC::Fukuoka 2025
gfx
6
850
探求の技術
azukiazusa1
7
1.7k
エンジニアにとってコードと並んで重要な「データ」のお話 - データが動くとコードが見える:関数型=データフロー入門
ismk
0
480
【Android】テキスト選択色の問題修正で心がけたこと
tonionagauzzi
0
150
JJUG CCC 2025 Fall バッチ性能!!劇的ビフォーアフター
hayashiyuu1
1
180
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
GitHub's CSS Performance
jonrohan
1032
470k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Site-Speed That Sticks
csswizardry
13
960
Measuring & Analyzing Core Web Vitals
bluesmoon
9
660
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Writing Fast Ruby
sferik
630
62k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
660
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Statistics for Hackers
jakevdp
799
220k
Balancing Empowerment & Direction
lara
5
740
Bash Introduction
62gerente
615
210k
Transcript
How Modular should Neural Module Networks Be for Systematic Generalization?
高山温 @ NewsPicks (Uzabase group) NeurIPS 2021 論文読み会 2022/01/25
自己紹介 • Atsushi Takayama / 高山温 • 2020年からNewsPicksでCTOをしていまし たが、今年からFellowしてます ◦
データ基盤、データ分析、レコメンドエンジン、検 索エンジンなどのチームを率いています • 大学中退 → 大学院中退 → 大学院生(イマココ) ◦ 元々物理をやっていましたが、今はコンピュータサ イエンスを勉強中 • 宣伝: ユーザベースはエンジニアの多様な キャリアと多様な成長を応援する会社です
Table of Contents • VQAとは • この研究の位置付け • 研究内容 •
結果 • 所感
VQA (Visual Question Answering) • since 2015 ◦ 画像を与えられて質問に答える問題 •
2021年に人間並みの精度になった ◦ Microsoft, Alibabaなど ▪ pre-trained attention-based models 人間 95.49 80.84 67.89 80.78
この研究の位置付け 1 • SOTAとは別方向で、「少ない例で学習して、 どれだけ類似の質問に答えられるか」という 問題設定がある • 右のような例で、人間なら少し学習しただけ で類似の質問にも答えられる ◦
Systematic Generalizationという
この研究の位置付け 2 NMN: Neural Modular Networks 質問文をパースしてネットワークを構築 →少し学習しただけでそこそこ強い FiLM: End-to-Endで微分可能なネットワーク
→大量に学習しないと強くない
この研究の位置付け 3 • NMNを詳しく研究したら何かおもしろいことがわかるのでは? ◦ 例えば、End-to-Endのモデルで「質問文の構造」を学習するような機構を取り入れられな いか、とか ◦ VQAだけでなく画像認識でも Systematic
Generalizationを上げるにはどうすればいい か、とか
• 下のような画像と質問1〜3があるとする ◦ 1と2は色に関する質問、 3は文字に関する質問 • 論文のタイトル “How Modular Should
Neural Networks Be” は次 のようなイメージ ◦ 左: 全部の質問に対応できるネットワークを学習する (最もModularityが低い) ◦ 中央: 色とカテゴリーというグループごとにネットワークを学習する ◦ 右: 各質問ごとに別々のネットワークを学習する (最もModularityが高い) 研究内容 1
研究内容 2 • 少し複雑な質問でも、同様にsub-taskに分解して、Modularityが高い ネットワークから低いネットワークまでのパターンを作る
結果 1 • グラフ(a)〜(d) ◦ 質問の種類 • 横軸 ◦ 全体の何割のデータで学
習したか • 縦軸 ◦ 学習に登場しなかった類 似の質問の正答率 • 4色のバー ◦ 右に行くにつれて Modularityが高い
結果 2 • 他にも色んなデータセットで検証 • やっぱりModularityは効く (結果は割愛)
所感 • ここまで書いていて、富士通さんのテックブ ログに解説が載ってるのに気づきました • 実はまったく知らない分野でしたが、締め切 り駆動で10本ぐらい読んでみると多くのこと が学べました。誘っていただき感謝 https://blog.fltech.dev/entry/2021/12/09/neurips2021-ja