Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
尤度/likelihood
Search
florets1
October 06, 2023
Education
3
900
尤度/likelihood
florets1
October 06, 2023
Tweet
Share
More Decks by florets1
See All by florets1
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
0
300
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
6
2.1k
直積は便利/direct_product_is_useful
florets1
3
320
butterfly_effect/butterfly_effect_in-house
florets1
1
140
データハンドリング/data_handling
florets1
2
180
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
250
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
請求と支払を照合する技術/using_full_join_in_r
florets1
2
230
応用セッション_同じデータでもP値が変わる話/key_considerations_in_NHST_2
florets1
1
1.1k
Other Decks in Education
See All in Education
Mathematics used in cryptography around us
herumi
2
740
書を持って、自転車で町へ出よう
yuritaco
0
140
お仕事図鑑pitchトーク
tetsuyaooooo
0
2.3k
オンラインゆっくり相談室ってなに?
ytapples613
PRO
0
160
1216
cbtlibrary
0
280
ISMS審査準備ブック_サンプル【LRM 情報セキュリティお役立ち資料】
lrm
0
1.1k
Medidas en informática
irocho
0
1.1k
1127
cbtlibrary
0
180
XML and Related Technologies - Lecture 7 - Web Technologies (1019888BNR)
signer
PRO
0
2.7k
Info Session MSc Computer Science & MSc Applied Informatics
signer
PRO
0
100
Bitcoin Lightning Network en pratique
rlifchitz
0
110
あきた地域課題解決インターンMarch2025
toyodome
0
300
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
A Philosophy of Restraint
colly
203
16k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Unsuck your backbone
ammeep
669
57k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
It's Worth the Effort
3n
184
28k
A Tale of Four Properties
chriscoyier
158
23k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Transcript
1 2023.10.07 Tokyo.R #109 尤度(ゆうど)
2 尤度(ゆうど) ある前提条件に従って結果が出現する場合に、逆に観 察結果からみて前提条件が「何々であった」と推測す る尤もらしさ(もっともらしさ)を表す数値を、 「何々」を変数とする関数として捉えたものである。
3 尤度(ゆうど) ある結果から、どのような前提条件があったと推測す るのが妥当なのかを教えてくれる指標
4 尤度(ゆうど) 尤度とは、観測値が与えられたとき、それを説明する モデルや分布などの母数(パラメーター)の値の尤も らしさのことである。
5 尤度(ゆうど) 想定するパラメーターがある値をとる場合に観測して いる事柄や事象が起こりうる確率のこと。
6 尤度(ゆうど) 確率密度関数において確率変数に観測値を代入したも のをいう。つまり,確率密度を観測値で評価した値で ある。また,これを未知母数の関数とみるとき,とく に尤度関数という。
7 条件付き分布 𝑝(𝑟|𝜃) θ:成功率 r = 1:成功 r = 0:失敗
このような分布をベルヌーイ分布といいます
8 ベルヌーイ分布 𝑝(𝑟|𝜃)を立体化
9 𝑝 𝑟 𝜃 の 𝑟 を固定
10
11 𝑝(𝑟|𝜃)を 𝜃が変数だと考えよう これが尤度(ゆうど)です
12 ベルヌーイ分布 𝑝(𝑟|𝜃) 𝑟を変数として考えると 条件付き分布 𝜃を変数として考えると 尤度(ゆうど)
13 尤度(ゆうど)とは ある結果𝑟から、どのような前提条件𝜃があったと推測 するのが妥当なのかを教えてくれる指標
14 最尤推定 失敗と成功が一回ずつ得られたなら尤度は (1 − 𝜃)𝜃 この尤度が最大となる𝜃は0.5 1 − 𝜃
𝜃 (1 − 𝜃)𝜃
15 参考書 東京大学教養学部統計学教室 編. 統計学入門. 東京大学 出版会, 2014 飯塚修平. ウェブ最適化ではじめる機械学習.
オライ リー・ジャパン, 2020
16 おまけ