Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
尤度/likelihood
Search
florets1
October 06, 2023
Education
3
940
尤度/likelihood
florets1
October 06, 2023
Tweet
Share
More Decks by florets1
See All by florets1
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
36
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
330
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
390
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.3k
直積は便利/direct_product_is_useful
florets1
3
400
butterfly_effect/butterfly_effect_in-house
florets1
1
220
データハンドリング/data_handling
florets1
2
230
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
280
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
Other Decks in Education
See All in Education
Linuxのよく使うコマンドを解説
mickey_kubo
1
240
미국 교환학생 가서 무료 홈스테이 살면서 인턴 취업하기
maryang
0
110
サンキッズゾーン 春日井駅前 ご案内
sanyohomes
0
540
Case Studies and Course Review - Lecture 12 - Information Visualisation (4019538FNR)
signer
PRO
1
2k
2025年度春学期 統計学 第8回 演習(1) 問題に対する答案の書き方(講義前配付用) (2025. 5. 29)
akiraasano
PRO
0
120
日本の教育の未来 を考える テクノロジーは教育をどのように変えるのか
kzkmaeda
1
220
演習問題
takenawa
0
9.3k
生成AIとの上手な付き合い方【公開版】/ How to Get Along Well with Generative AI (Public Version)
handlename
0
530
ふりかえり研修2025
pokotyamu
0
1.3k
Pythonパッケージ管理 [uv] 完全入門
mickey_kubo
20
17k
より良い学振申請書(DC)を作ろう 2025
luiyoshida
1
3.3k
ThingLink
matleenalaakso
28
4.1k
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
109
19k
Balancing Empowerment & Direction
lara
1
490
Bash Introduction
62gerente
613
210k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Why Our Code Smells
bkeepers
PRO
337
57k
Gamification - CAS2011
davidbonilla
81
5.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
1 2023.10.07 Tokyo.R #109 尤度(ゆうど)
2 尤度(ゆうど) ある前提条件に従って結果が出現する場合に、逆に観 察結果からみて前提条件が「何々であった」と推測す る尤もらしさ(もっともらしさ)を表す数値を、 「何々」を変数とする関数として捉えたものである。
3 尤度(ゆうど) ある結果から、どのような前提条件があったと推測す るのが妥当なのかを教えてくれる指標
4 尤度(ゆうど) 尤度とは、観測値が与えられたとき、それを説明する モデルや分布などの母数(パラメーター)の値の尤も らしさのことである。
5 尤度(ゆうど) 想定するパラメーターがある値をとる場合に観測して いる事柄や事象が起こりうる確率のこと。
6 尤度(ゆうど) 確率密度関数において確率変数に観測値を代入したも のをいう。つまり,確率密度を観測値で評価した値で ある。また,これを未知母数の関数とみるとき,とく に尤度関数という。
7 条件付き分布 𝑝(𝑟|𝜃) θ:成功率 r = 1:成功 r = 0:失敗
このような分布をベルヌーイ分布といいます
8 ベルヌーイ分布 𝑝(𝑟|𝜃)を立体化
9 𝑝 𝑟 𝜃 の 𝑟 を固定
10
11 𝑝(𝑟|𝜃)を 𝜃が変数だと考えよう これが尤度(ゆうど)です
12 ベルヌーイ分布 𝑝(𝑟|𝜃) 𝑟を変数として考えると 条件付き分布 𝜃を変数として考えると 尤度(ゆうど)
13 尤度(ゆうど)とは ある結果𝑟から、どのような前提条件𝜃があったと推測 するのが妥当なのかを教えてくれる指標
14 最尤推定 失敗と成功が一回ずつ得られたなら尤度は (1 − 𝜃)𝜃 この尤度が最大となる𝜃は0.5 1 − 𝜃
𝜃 (1 − 𝜃)𝜃
15 参考書 東京大学教養学部統計学教室 編. 統計学入門. 東京大学 出版会, 2014 飯塚修平. ウェブ最適化ではじめる機械学習.
オライ リー・ジャパン, 2020
16 おまけ