Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
尤度/likelihood
Search
florets1
October 06, 2023
Education
3
940
尤度/likelihood
florets1
October 06, 2023
Tweet
Share
More Decks by florets1
See All by florets1
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
58
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
350
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
410
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.3k
直積は便利/direct_product_is_useful
florets1
3
410
butterfly_effect/butterfly_effect_in-house
florets1
1
240
データハンドリング/data_handling
florets1
2
230
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
290
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
16k
Other Decks in Education
See All in Education
AWSと共に英語を学ぼう
amarelo_n24
0
150
Online Privacy
takahitosakamoto
0
110
Sponsor the Conference | VizChitra 2025
vizchitra
0
620
Портфолио - Шынар Ауелбекова
shynar
0
100
(キラキラ)人事教育担当のつらみ~教育担当として知っておくポイント~
masakiokuda
0
130
Linuxのよく使うコマンドを解説
mickey_kubo
1
260
Education-JAWS #3 ~教育現場に、AWSのチカラを~
masakiokuda
0
220
教える側は、初学者に谷越えまで伴走すべき(ダニング・クルーガー効果からの考察)
hysmrk
3
130
2025年度春学期 統計学 第9回 確からしさを記述する ー 確率 (2025. 6. 5)
akiraasano
PRO
0
150
2025年度春学期 統計学 第14回 分布についての仮説を検証する ー 仮説検定(1) (2025. 7. 10)
akiraasano
PRO
0
130
技術勉強会 〜 OAuth & OIDC 入門編 / 20250528 OAuth and OIDC
oidfj
5
1.7k
2025年度春学期 統計学 第12回 分布の平均を推測する ー 区間推定 (2025. 6. 26)
akiraasano
PRO
0
150
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
How to Ace a Technical Interview
jacobian
279
23k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Documentation Writing (for coders)
carmenintech
74
5k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Transcript
1 2023.10.07 Tokyo.R #109 尤度(ゆうど)
2 尤度(ゆうど) ある前提条件に従って結果が出現する場合に、逆に観 察結果からみて前提条件が「何々であった」と推測す る尤もらしさ(もっともらしさ)を表す数値を、 「何々」を変数とする関数として捉えたものである。
3 尤度(ゆうど) ある結果から、どのような前提条件があったと推測す るのが妥当なのかを教えてくれる指標
4 尤度(ゆうど) 尤度とは、観測値が与えられたとき、それを説明する モデルや分布などの母数(パラメーター)の値の尤も らしさのことである。
5 尤度(ゆうど) 想定するパラメーターがある値をとる場合に観測して いる事柄や事象が起こりうる確率のこと。
6 尤度(ゆうど) 確率密度関数において確率変数に観測値を代入したも のをいう。つまり,確率密度を観測値で評価した値で ある。また,これを未知母数の関数とみるとき,とく に尤度関数という。
7 条件付き分布 𝑝(𝑟|𝜃) θ:成功率 r = 1:成功 r = 0:失敗
このような分布をベルヌーイ分布といいます
8 ベルヌーイ分布 𝑝(𝑟|𝜃)を立体化
9 𝑝 𝑟 𝜃 の 𝑟 を固定
10
11 𝑝(𝑟|𝜃)を 𝜃が変数だと考えよう これが尤度(ゆうど)です
12 ベルヌーイ分布 𝑝(𝑟|𝜃) 𝑟を変数として考えると 条件付き分布 𝜃を変数として考えると 尤度(ゆうど)
13 尤度(ゆうど)とは ある結果𝑟から、どのような前提条件𝜃があったと推測 するのが妥当なのかを教えてくれる指標
14 最尤推定 失敗と成功が一回ずつ得られたなら尤度は (1 − 𝜃)𝜃 この尤度が最大となる𝜃は0.5 1 − 𝜃
𝜃 (1 − 𝜃)𝜃
15 参考書 東京大学教養学部統計学教室 編. 統計学入門. 東京大学 出版会, 2014 飯塚修平. ウェブ最適化ではじめる機械学習.
オライ リー・ジャパン, 2020
16 おまけ