Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
尤度/likelihood
Search
florets1
October 06, 2023
Education
3
940
尤度/likelihood
florets1
October 06, 2023
Tweet
Share
More Decks by florets1
See All by florets1
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
0
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
60
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
380
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
410
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.3k
直積は便利/direct_product_is_useful
florets1
3
410
butterfly_effect/butterfly_effect_in-house
florets1
1
240
データハンドリング/data_handling
florets1
2
240
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
290
Other Decks in Education
See All in Education
Sponsor the Conference | VizChitra 2025
vizchitra
0
620
Online Privacy
takahitosakamoto
0
110
2025年度春学期 統計学 第11回 分布の「型」を考える ー 確率分布モデルと正規分布 (2025. 6. 19)
akiraasano
PRO
0
170
AI for Learning
fonylew
0
180
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
170
[Segah 2025] Gamified Interventions for Composting Behavior in the Workplace
ezefranca
0
110
質のよいアウトプットをできるようになるために~「読む・聞く、まとめる、言葉にする」を読んで~
amarelo_n24
0
220
『会社を知ってもらう』から『安心して活躍してもらう』までの プロセスとフロー
sasakendayo
0
260
Técnicas y Tecnología para la Investigación Neurocientífica en el Neuromanagement
jvpcubias
0
130
Transición del Management al Neuromanagement
jvpcubias
0
210
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
120
20250807_がんばらないコミュニティ運営
ponponmikankan
0
170
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.6k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Bash Introduction
62gerente
615
210k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Code Reviewing Like a Champion
maltzj
525
40k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Into the Great Unknown - MozCon
thekraken
40
2k
Become a Pro
speakerdeck
PRO
29
5.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Transcript
1 2023.10.07 Tokyo.R #109 尤度(ゆうど)
2 尤度(ゆうど) ある前提条件に従って結果が出現する場合に、逆に観 察結果からみて前提条件が「何々であった」と推測す る尤もらしさ(もっともらしさ)を表す数値を、 「何々」を変数とする関数として捉えたものである。
3 尤度(ゆうど) ある結果から、どのような前提条件があったと推測す るのが妥当なのかを教えてくれる指標
4 尤度(ゆうど) 尤度とは、観測値が与えられたとき、それを説明する モデルや分布などの母数(パラメーター)の値の尤も らしさのことである。
5 尤度(ゆうど) 想定するパラメーターがある値をとる場合に観測して いる事柄や事象が起こりうる確率のこと。
6 尤度(ゆうど) 確率密度関数において確率変数に観測値を代入したも のをいう。つまり,確率密度を観測値で評価した値で ある。また,これを未知母数の関数とみるとき,とく に尤度関数という。
7 条件付き分布 𝑝(𝑟|𝜃) θ:成功率 r = 1:成功 r = 0:失敗
このような分布をベルヌーイ分布といいます
8 ベルヌーイ分布 𝑝(𝑟|𝜃)を立体化
9 𝑝 𝑟 𝜃 の 𝑟 を固定
10
11 𝑝(𝑟|𝜃)を 𝜃が変数だと考えよう これが尤度(ゆうど)です
12 ベルヌーイ分布 𝑝(𝑟|𝜃) 𝑟を変数として考えると 条件付き分布 𝜃を変数として考えると 尤度(ゆうど)
13 尤度(ゆうど)とは ある結果𝑟から、どのような前提条件𝜃があったと推測 するのが妥当なのかを教えてくれる指標
14 最尤推定 失敗と成功が一回ずつ得られたなら尤度は (1 − 𝜃)𝜃 この尤度が最大となる𝜃は0.5 1 − 𝜃
𝜃 (1 − 𝜃)𝜃
15 参考書 東京大学教養学部統計学教室 編. 統計学入門. 東京大学 出版会, 2014 飯塚修平. ウェブ最適化ではじめる機械学習.
オライ リー・ジャパン, 2020
16 おまけ