Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Efficient mutation analysis of relational database structure using mutant schemata and parallelisation

Efficient mutation analysis of relational database structure using mutant schemata and parallelisation

Interested in learning more about this topic? Visit this web site to read the paper: https://www.gregorykapfhammer.com/research/papers/Wright2013/

Gregory Kapfhammer

March 18, 2013
Tweet

More Decks by Gregory Kapfhammer

Other Decks in Research

Transcript

  1. Efficient Mutation Analysis of
    Relational Database Structure Using
    Mutant Schemata and Parallelisation
    Chris J. Wright
    Gregory M. Kapfhammer
    Phil McMinn
    Mutation 2013

    View Slide

  2. Chris J. Wright - [email protected]
    Relational Database
    Management Systems
    (RDBMS)

    View Slide

  3. Chris J. Wright - [email protected]
    Relational Database
    Management Systems
    (RDBMS)

    View Slide

  4. Chris J. Wright - [email protected]

    View Slide

  5. Chris J. Wright - [email protected]
    Many different RDBMSs...

    View Slide

  6. Chris J. Wright - [email protected]
    Many different RDBMSs...
    ...same specification of structure

    View Slide

  7. Chris J. Wright - [email protected]
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    Database Schema

    View Slide

  8. Chris J. Wright - [email protected]
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    Database Schema
    Tables

    View Slide

  9. Chris J. Wright - [email protected]
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    Database Schema
    Columns

    View Slide

  10. Chris J. Wright - [email protected]
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    Database Schema
    Constraints

    View Slide

  11. Chris J. Wright - [email protected]
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    Database Schema
    How do we know this is correct?

    View Slide

  12. Chris J. Wright - [email protected]
    Why Test Database Structure?

    View Slide

  13. Chris J. Wright - [email protected]
    Database Schema
    Why Test Database Structure?

    View Slide

  14. Chris J. Wright - [email protected]
    DBMS
    Database Schema
    Why Test Database Structure?

    View Slide

  15. Chris J. Wright - [email protected]
    DBMS
    Database Schema
    Why Test Database Structure?

    View Slide

  16. Chris J. Wright - [email protected]
    DBMS
    Application
    Database Schema
    Why Test Database Structure?

    View Slide

  17. Chris J. Wright - [email protected]
    DBMS
    Application Web Server
    Database Schema
    Why Test Database Structure?

    View Slide

  18. Chris J. Wright - [email protected]
    DBMS
    Application Web Server
    Third Party
    Database Schema
    Why Test Database Structure?

    View Slide

  19. Chris J. Wright - [email protected]
    DBMS
    Application Web Server
    Third Party
    Database Schema

    Why Test Database Structure?

    View Slide

  20. Chris J. Wright - [email protected]
    DBMS
    Application Web Server
    Third Party
    Database Schema


    Why Test Database Structure?

    View Slide

  21. Chris J. Wright - [email protected]
    DBMS
    Application Web Server
    Third Party
    Database Schema

    ✗ ✗
    Why Test Database Structure?

    View Slide

  22. Chris J. Wright - [email protected]
    DBMS
    Application Web Server
    Third Party
    Database Schema

    ✗ ✗

    Why Test Database Structure?

    View Slide

  23. Chris J. Wright - [email protected]
    Mutation Analysis

    View Slide

  24. Chris J. Wright - [email protected]
    Mutation Analysis
    Test Suite Application

    View Slide

  25. Chris J. Wright - [email protected]
    Mutation Analysis
    Database
    Test Suite

    View Slide

  26. Chris J. Wright - [email protected]
    Mutation Analysis
    Database
    Insert Statements

    View Slide

  27. Chris J. Wright - [email protected]
    Mutation Analysis
    Database
    Insert Statements

    View Slide

  28. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    Database
    Insert Statements

    View Slide

  29. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    Database
    Insert Statements

    View Slide

  30. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');
    Database
    Insert Statements

    View Slide

  31. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    Database
    Insert Statements

    View Slide

  32. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    Database
    Insert Statements

    View Slide

  33. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');
    Database
    Insert Statements

    View Slide

  34. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    Database
    Insert Statements

    View Slide

  35. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    Database
    Insert Statements

    View Slide

  36. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');
    Database
    Insert Statements

    View Slide

  37. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database
    Insert Statements

    View Slide

  38. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database
    Insert Statements

    View Slide

  39. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database
    Insert Statements
    INSERT INTO S(X, Y, Z)
    VALUES('a', 'b', 'a');

    View Slide

  40. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database
    Insert Statements
    INSERT INTO S(X, Y, Z)
    VALUES('a', 'b', 'a');

    View Slide

  41. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database
    Insert Statements
    INSERT INTO S(X, Y, Z)
    VALUES('a', 'b', 'a');

    View Slide

  42. Chris J. Wright - [email protected]
    Mutating the Structure
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, )
    9 REFERENCES T (A, B)
    10 );
    Y
    Z

    View Slide

  43. Chris J. Wright - [email protected]
    Mutating the Structure
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, )
    9 REFERENCES T (A, B)
    10 );
    Y
    Z

    View Slide

  44. Chris J. Wright - [email protected]
    Mutating the Structure
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, )
    9 REFERENCES T (A, B)
    10 );
    Y
    Z

    View Slide

  45. Chris J. Wright - [email protected]
    Mutating the Structure
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, )
    9 REFERENCES T (A, B)
    10 );
    Y
    Z

    View Slide

  46. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );

    View Slide

  47. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );

    View Slide

  48. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    Database (mutated)

    View Slide

  49. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    Database (mutated)
    Insert Statements

    View Slide

  50. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');
    Database (mutated)
    Insert Statements

    View Slide

  51. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    Database (mutated)
    Insert Statements

    View Slide

  52. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    Database (mutated)
    Insert Statements

    View Slide

  53. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');
    Database (mutated)
    Insert Statements

    View Slide

  54. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    Database (mutated)
    Insert Statements

    View Slide

  55. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    Database (mutated)
    Insert Statements

    View Slide

  56. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');
    Database (mutated)
    Insert Statements

    View Slide

  57. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database (mutated)
    Insert Statements

    View Slide

  58. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database (mutated)
    Insert Statements

    View Slide

  59. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database (mutated)
    Insert Statements
    INSERT INTO S(X, Y, Z)
    VALUES('a', 'b', 'a');

    View Slide

  60. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database (mutated)
    Insert Statements
    INSERT INTO S(X, Y, Z)
    VALUES('a', 'b', 'a');

    View Slide

  61. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database (mutated)
    Insert Statements
    INSERT INTO S(X, Y, Z)
    VALUES('a', 'b', 'a');

    View Slide

  62. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database (mutated)
    Insert Statements
    INSERT INTO S(X, Y, Z)
    VALUES('a', 'b', 'a');

    Results
    are different

    View Slide

  63. Chris J. Wright - [email protected]
    Mutation Analysis
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO T(A, B, C)
    VALUES('a', 'a', 'a');

    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'b');

    Database (mutated)
    Insert Statements
    INSERT INTO S(X, Y, Z)
    VALUES('a', 'b', 'a');

    Mutant
    is killed

    View Slide

  64. Chris J. Wright - [email protected]
    Mutation Operators

    View Slide

  65. Chris J. Wright - [email protected]
    Mutation Operators
    Primary Key

    View Slide

  66. Chris J. Wright - [email protected]
    Mutation Operators
    Primary Key Not Null

    View Slide

  67. Chris J. Wright - [email protected]
    Mutation Operators
    Check
    Primary Key Not Null

    View Slide

  68. Chris J. Wright - [email protected]
    Mutation Operators
    Check
    Primary Key Not Null
    Unique

    View Slide

  69. Chris J. Wright - [email protected]
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    The Problem?
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );

    View Slide

  70. Chris J. Wright - [email protected]
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    The Problem?
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );

    View Slide

  71. Chris J. Wright - [email protected]
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    The Problem?
    Many mutants
    to analyse

    View Slide

  72. Chris J. Wright - [email protected]
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    The Problem?
    A time consuming
    process

    View Slide

  73. Chris J. Wright - [email protected]
    The Solution?

    View Slide

  74. Chris J. Wright - [email protected]
    The Solution?
    Mutant Schemata

    View Slide

  75. Chris J. Wright - [email protected]
    The Solution?
    Mutant Schemata
    Combine mutants
    into a ‘meta-mutant’

    View Slide

  76. Chris J. Wright - [email protected]
    The Solution?
    Parallelisation
    Mutant Schemata
    Combine mutants
    into a ‘meta-mutant’

    View Slide

  77. Chris J. Wright - [email protected]
    The Solution?
    Parallelisation
    Mutant Schemata
    Combine mutants
    into a ‘meta-mutant’
    Analyse multiple
    mutants simultaneously

    View Slide

  78. Chris J. Wright - [email protected]
    Mutation Analysis Approaches
    Mutant
    Representation
    Parallelisation
    Strategy
    Normal
    “Original”

    View Slide

  79. Chris J. Wright - [email protected]
    Mutation Analysis Approaches
    Mutant
    Representation
    Parallelisation
    Strategy
    Schemata
    Normal
    “Original”
    Full
    “Full Schemata”

    View Slide

  80. Chris J. Wright - [email protected]
    Original Approach

    View Slide

  81. Chris J. Wright - [email protected]
    Original Approach
    Create structure
    in database

    View Slide

  82. Chris J. Wright - [email protected]
    Original Approach
    Create structure
    in database
    Execute insert
    statements

    View Slide

  83. Chris J. Wright - [email protected]
    Original Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database

    View Slide

  84. Chris J. Wright - [email protected]
    Original Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database

    View Slide

  85. Chris J. Wright - [email protected]
    Mutant Schemata Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database

    View Slide

  86. Chris J. Wright - [email protected]
    Mutant Schemata Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database

    View Slide

  87. Chris J. Wright - [email protected]
    Mutant Schemata Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database
    Reduce
    time
    creating/
    dropping
    database

    View Slide

  88. Chris J. Wright - [email protected]
    Full Schemata Approach

    View Slide

  89. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );

    View Slide

  90. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES T (A, B)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );

    View Slide

  91. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    1 CREATE TABLE mutant_2_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    4 );
    5
    6 CREATE TABLE mutant_2_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES mutant_2_T (A, B)
    10 );

    View Slide

  92. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_2_T (
    13 A CHAR, B CHAR, C CHAR,
    14 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    15 );
    16
    17 CREATE TABLE mutant_2_S (
    18 X CHAR, Y CHAR, Z CHAR,
    19 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    20 REFERENCES mutant_2_T (A, B)
    21 );

    View Slide

  93. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_2_T (
    13 A CHAR, B CHAR, C CHAR,
    14 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    15 );
    16
    17 CREATE TABLE mutant_2_S (
    18 X CHAR, Y CHAR, Z CHAR,
    19 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    20 REFERENCES mutant_2_T (A, B)
    21 );

    View Slide

  94. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_2_T (
    13 A CHAR, B CHAR, C CHAR,
    14 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    15 );
    16
    17 CREATE TABLE mutant_2_S (
    18 X CHAR, Y CHAR, Z CHAR,
    19 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    20 REFERENCES mutant_2_T (A, B)
    21 );
    Database (mutated)
    Insert Statements

    View Slide

  95. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_2_T (
    13 A CHAR, B CHAR, C CHAR,
    14 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    15 );
    16
    17 CREATE TABLE mutant_2_S (
    18 X CHAR, Y CHAR, Z CHAR,
    19 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    20 REFERENCES mutant_2_T (A, B)
    21 );
    Database (mutated)
    INSERT INTO S(X, Y, Z)
    VALUES('a', 'a', 'a');
    Insert Statements

    View Slide

  96. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_2_T (
    13 A CHAR, B CHAR, C CHAR,
    14 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    15 );
    16
    17 CREATE TABLE mutant_2_S (
    18 X CHAR, Y CHAR, Z CHAR,
    19 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    20 REFERENCES mutant_2_T (A, B)
    21 );
    Database (mutated)
    INSERT INTO mutant_1_S(X, Y, Z)
    VALUES('a', 'a', 'a');
    Insert Statements

    View Slide

  97. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_2_T (
    13 A CHAR, B CHAR, C CHAR,
    14 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    15 );
    16
    17 CREATE TABLE mutant_2_S (
    18 X CHAR, Y CHAR, Z CHAR,
    19 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    20 REFERENCES mutant_2_T (A, B)
    21 );
    Database (mutated)
    INSERT INTO mutant_1_S(X, Y, Z)
    VALUES('a', 'a', 'a');

    Insert Statements

    View Slide

  98. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_2_T (
    13 A CHAR, B CHAR, C CHAR,
    14 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    15 );
    16
    17 CREATE TABLE mutant_2_S (
    18 X CHAR, Y CHAR, Z CHAR,
    19 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    20 REFERENCES mutant_2_T (A, B)
    21 );
    Database (mutated)
    INSERT INTO mutant_1_S(X, Y, Z)
    VALUES('a', 'a', 'a'); ✓
    Insert Statements

    View Slide

  99. Chris J. Wright - [email protected]
    Full Schemata Approach

    View Slide

  100. Chris J. Wright - [email protected]
    Create tables once...
    Full Schemata Approach

    View Slide

  101. Chris J. Wright - [email protected]
    Create tables once...
    ...rewrite queries to match
    Full Schemata Approach

    View Slide

  102. Chris J. Wright - [email protected]
    Mutation Analysis Approaches
    Mutant
    Representation
    Parallelisation
    Strategy
    Schemata
    Normal
    “Original”
    Full
    “Full Schemata”

    View Slide

  103. Chris J. Wright - [email protected]
    Mutation Analysis Approaches
    Mutant
    Representation
    Parallelisation
    Strategy
    Schemata
    Normal
    “Original”
    Full
    “Full Schemata”
    Minimal
    “Minimal Schemata”

    View Slide

  104. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_2_T (
    13 A CHAR, B CHAR, C CHAR,
    14 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    15 );
    16
    17 CREATE TABLE mutant_2_S (
    18 X CHAR, Y CHAR, Z CHAR,
    19 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    20 REFERENCES mutant_2_T (A, B)
    21 );

    View Slide

  105. Chris J. Wright - [email protected]
    Full Schemata Approach
    1 CREATE TABLE mutant_1_T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE mutant_1_S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    9 REFERENCES mutant_1_T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_2_T (
    13 A CHAR, B CHAR, C CHAR,
    14 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    15 );
    16
    17 CREATE TABLE mutant_2_S (
    18 X CHAR, Y CHAR, Z CHAR,
    19 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    20 REFERENCES mutant_2_T (A, B)
    21 );
    Mutated
    Tables

    View Slide

  106. Chris J. Wright - [email protected]
    Minimal Schemata Approach
    1 CREATE TABLE mutant_1_S (
    2 X CHAR, Y CHAR, Z CHAR,
    3 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    4 REFERENCES mutant_1_T (A, B)
    5 );
    6
    7 CREATE TABLE mutant_2_T (
    8 A CHAR, B CHAR, C CHAR,
    9 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    10 );
    Mutated
    Tables

    View Slide

  107. Chris J. Wright - [email protected]
    Minimal Schemata Approach
    1 CREATE TABLE mutant_1_S (
    2 X CHAR, Y CHAR, Z CHAR,
    3 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    4 REFERENCES mutant_1_T (A, B)
    5 );
    6
    7 CREATE TABLE mutant_2_T (
    8 A CHAR, B CHAR, C CHAR,
    9 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    10 );

    View Slide

  108. Chris J. Wright - [email protected]
    Minimal Schemata Approach
    1 CREATE TABLE mutant_1_S (
    2 X CHAR, Y CHAR, Z CHAR,
    3 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    4 REFERENCES mutant_1_T (A, B)
    5 );
    6
    7 CREATE TABLE mutant_2_T (
    8 A CHAR, B CHAR, C CHAR,
    9 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    10 );

    View Slide

  109. Chris J. Wright - [email protected]
    Minimal Schemata Approach
    1 CREATE TABLE mutant_1_S (
    2 X CHAR, Y CHAR, Z CHAR,
    3 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    4 REFERENCES mutant_1_T (A, B)
    5 );
    6
    7 CREATE TABLE mutant_2_T (
    8 A CHAR, B CHAR, C CHAR,
    9 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    10 );

    View Slide

  110. Chris J. Wright - [email protected]
    Minimal Schemata Approach
    1 CREATE TABLE mutant_1_S (
    2 X CHAR, Y CHAR, Z CHAR,
    3 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    4 REFERENCES mutant_1_T (A, B)
    5 );
    6
    7 CREATE TABLE mutant_2_T (
    8 A CHAR, B CHAR, C CHAR,
    9 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    10 );
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );

    View Slide

  111. Chris J. Wright - [email protected]
    Minimal Schemata Approach
    1 CREATE TABLE T (
    2 A CHAR, B CHAR, C CHAR,
    3 CONSTRAINT UniqueOnColsAandB UNIQUE (A, B)
    4 );
    5
    6 CREATE TABLE S (
    7 X CHAR, Y CHAR, Z CHAR,
    8 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Y)
    9 REFERENCES T (A, B)
    10 );
    11
    12 CREATE TABLE mutant_1_S (
    13 X CHAR, Y CHAR, Z CHAR,
    14 CONSTRAINT RefToColsAandB FOREIGN KEY (X, Z)
    15 REFERENCES T (A, B)
    16 );
    17
    18 CREATE TABLE mutant_2_T (
    19 A CHAR, B CHAR, C CHAR,
    20 CONSTRAINT UniqueOnColsAandB UNIQUE (A, C)
    21 );

    View Slide

  112. Chris J. Wright - [email protected]
    Minimal Schemata Approach

    View Slide

  113. Chris J. Wright - [email protected]
    Create tables once...
    Minimal Schemata Approach

    View Slide

  114. Chris J. Wright - [email protected]
    Create tables once...
    ...only mutated tables...
    Minimal Schemata Approach

    View Slide

  115. Chris J. Wright - [email protected]
    Create tables once...
    ...only mutated tables...
    Minimal Schemata Approach
    ...reduce queries executed

    View Slide

  116. Chris J. Wright - [email protected]
    Create tables once...
    ...only mutated tables...
    Minimal Schemata Approach
    ...reduce queries executed
    Plus one copy for
    foreign keys

    View Slide

  117. Chris J. Wright - [email protected]
    Mutation Analysis Approaches
    Mutant
    Representation
    Parallelisation
    Strategy
    Schemata
    Normal
    “Original”
    Full
    “Full Schemata”
    Minimal
    “Minimal Schemata”

    View Slide

  118. Chris J. Wright - [email protected]
    Mutation Analysis Approaches
    Mutant
    Representation
    Parallelisation
    Strategy
    Schemata
    Normal
    “Original”
    Full
    “Full Schemata”
    Minimal
    “Minimal Schemata”
    Up front
    “Up-Front Schemata”

    View Slide

  119. Chris J. Wright - [email protected]
    Mutation Analysis Approaches
    Mutant
    Representation
    Parallelisation
    Strategy
    Schemata
    Normal
    “Original”
    Full
    “Full Schemata”
    Minimal
    “Minimal Schemata”
    Up front
    “Up-Front Schemata”
    Just in time
    “Just-in-Time Schemata”

    View Slide

  120. Chris J. Wright - [email protected]
    Parallelisation
    ‘Just-in-Time Schemata’

    View Slide

  121. Chris J. Wright - [email protected]
    Parallelisation
    ‘Just-in-Time Schemata’
    Make the ‘Original’
    approach parallel

    View Slide

  122. Chris J. Wright - [email protected]
    Parallelisation
    ‘Up-Front Schemata’
    ‘Just-in-Time Schemata’
    Make the ‘Original’
    approach parallel

    View Slide

  123. Chris J. Wright - [email protected]
    Parallelisation
    ‘Up-Front Schemata’
    ‘Just-in-Time Schemata’
    Make the ‘Original’
    approach parallel
    Make the ‘Full Schemata’
    approach parallel

    View Slide

  124. Chris J. Wright - [email protected]
    Original Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database

    View Slide

  125. Chris J. Wright - [email protected]
    ‘Just-in-Time’ Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database
    Parallel

    View Slide

  126. Chris J. Wright - [email protected]
    ‘Just-in-Time’ Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database
    Parallel

    View Slide

  127. Chris J. Wright - [email protected]
    Mutant Schemata Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database

    View Slide

  128. Chris J. Wright - [email protected]
    ‘Up-Front’ Approach
    Create structure
    in database
    Execute insert
    statements
    Drop structure
    from database
    Parallel

    View Slide

  129. Chris J. Wright - [email protected]
    Empirical Study

    View Slide

  130. Chris J. Wright - [email protected]
    Empirical Study
    Evaluation Metric Mutation Time
    Approaches 5
    Case Studies 6
    DBMSs 2
    Repetitions 30

    View Slide

  131. Chris J. Wright - [email protected]
    Empirical Study
    Evaluation Metric Mutation Time
    Approaches 5
    Case Studies 6
    DBMSs 2
    Repetitions 30

    View Slide

  132. Chris J. Wright - [email protected]
    Empirical Study
    Evaluation Metric Mutation Time
    Approaches 5
    Case Studies 6
    DBMSs 2
    Repetitions 30

    View Slide

  133. Chris J. Wright - [email protected]
    Empirical Study
    Evaluation Metric Mutation Time
    Approaches 5
    Case Studies 6
    DBMSs 2
    Repetitions 30

    View Slide

  134. Chris J. Wright - [email protected]
    Empirical Study
    Evaluation Metric Mutation Time
    Approaches 5
    Case Studies 6
    DBMSs 2
    Repetitions 30

    View Slide

  135. Chris J. Wright - [email protected]
    Empirical Study: Approaches
    Mutant
    Representation
    Parallelisation
    Strategy
    Schemata
    Normal
    “Original”
    Full
    “Full Schemata”
    Minimal
    “Minimal Schemata”
    Up front
    “Up-Front Schemata”
    Just in time
    “Just-in-Time Schemata”

    View Slide

  136. Chris J. Wright - [email protected]
    Empirical Study: Case Studies
    Case Study Tables Columns
    Primary
    Keys
    Foreign
    Keys
    Unique
    Constraints
    Cloc 2 10 0 0 0
    JWhoisServer 6 49 6 0 0
    NistDML182 2 32 1 1 0
    NistDML183 2 6 0 1 1
    RiskIt 13 56 11 10 0
    UnixUsage 8 32 7 7 0

    View Slide

  137. Chris J. Wright - [email protected]
    Empirical Study: Case Studies
    Case Study Tables Columns
    Primary
    Keys
    Foreign
    Keys
    Unique
    Constraints
    Cloc 2 10 0 0 0
    JWhoisServer 6 49 6 0 0
    NistDML182 2 32 1 1 0
    NistDML183 2 6 0 1 1
    RiskIt 13 56 11 10 0
    UnixUsage 8 32 7 7 0

    View Slide

  138. Chris J. Wright - [email protected]
    Empirical Study: Case Studies
    Case Study Tables Columns
    Primary
    Keys
    Foreign
    Keys
    Unique
    Constraints
    Cloc 2 10 0 0 0
    JWhoisServer 6 49 6 0 0
    NistDML182 2 32 1 1 0
    NistDML183 2 6 0 1 1
    RiskIt 13 56 11 10 0
    UnixUsage 8 32 7 7 0

    View Slide

  139. Chris J. Wright - [email protected]
    Empirical Study: Case Studies
    Case Study Tables Columns
    Primary
    Keys
    Foreign
    Keys
    Unique
    Constraints
    Cloc 2 10 0 0 0
    JWhoisServer 6 49 6 0 0
    NistDML182 2 32 1 1 0
    NistDML183 2 6 0 1 1
    RiskIt 13 56 11 10 0
    UnixUsage 8 32 7 7 0

    View Slide

  140. Chris J. Wright - [email protected]
    Empirical Study: Case Studies
    Case Study Tables Columns
    Primary
    Keys
    Foreign
    Keys
    Unique
    Constraints
    Cloc 2 10 0 0 0
    JWhoisServer 6 49 6 0 0
    NistDML182 2 32 1 1 0
    NistDML183 2 6 0 1 1
    RiskIt 13 56 11 10 0
    UnixUsage 8 32 7 7 0

    View Slide

  141. Chris J. Wright - [email protected]
    Empirical Study: Case Studies
    Case Study Tables Columns
    Primary
    Keys
    Foreign
    Keys
    Unique
    Constraints
    Cloc 2 10 0 0 0
    JWhoisServer 6 49 6 0 0
    NistDML182 2 32 1 1 0
    NistDML183 2 6 0 1 1
    RiskIt 13 56 11 10 0
    UnixUsage 8 32 7 7 0

    View Slide

  142. Chris J. Wright - [email protected]
    Empirical Study: Case Studies
    Case Study Tables Columns
    Primary
    Keys
    Foreign
    Keys
    Unique
    Constraints
    Cloc 2 10 0 0 0
    JWhoisServer 6 49 6 0 0
    NistDML182 2 32 1 1 0
    NistDML183 2 6 0 1 1
    RiskIt 13 56 11 10 0
    UnixUsage 8 32 7 7 0

    View Slide

  143. Chris J. Wright - [email protected]
    Empirical Study: Case Studies
    Case Study
    Total
    Constraints
    Total
    Mutants
    Cloc 0 30
    JWhoisServer 50 184
    NistDML182 2 66
    NistDML183 2 18
    RiskIt 36 160
    UnixUsage 23 69

    View Slide

  144. Chris J. Wright - [email protected]
    Empirical Study: DBMSs

    View Slide

  145. Chris J. Wright - [email protected]
    Empirical Study: DBMSs
    PostgreSQL

    View Slide

  146. Chris J. Wright - [email protected]
    Empirical Study: DBMSs
    SQLite
    PostgreSQL

    View Slide

  147. Chris J. Wright - [email protected]
    Empirical Study: DBMSs
    SQLite
    PostgreSQL
    Client-Server Model

    View Slide

  148. Chris J. Wright - [email protected]
    Empirical Study: DBMSs
    SQLite
    PostgreSQL
    Client-Server Model Local Client Model

    View Slide

  149. Chris J. Wright - [email protected]
    Empirical Study: DBMSs
    SQLite
    PostgreSQL
    Client-Server Model Local Client Model
    Simultaneous Read/Write

    View Slide

  150. Chris J. Wright - [email protected]
    Empirical Study: DBMSs
    SQLite
    PostgreSQL
    Client-Server Model Local Client Model
    Simultaneous Read/Write Locking on Write

    View Slide

  151. Chris J. Wright - [email protected]
    Empirical Study: DBMSs
    SQLite
    PostgreSQL
    Client-Server Model Local Client Model
    Simultaneous Read/Write Locking on Write
    Prevents Parallel
    Approaches

    View Slide

  152. Chris J. Wright - [email protected]
    Results

    View Slide

  153. Chris J. Wright - [email protected]
    Results
    • Median of repetitions

    View Slide

  154. Chris J. Wright - [email protected]
    Results
    • Median of repetitions
    • Lower-is-better metric

    View Slide

  155. Chris J. Wright - [email protected]
    Results
    • Median of repetitions
    • Lower-is-better metric
    • Split by...

    View Slide

  156. Chris J. Wright - [email protected]
    Results
    • Median of repetitions
    • Lower-is-better metric
    • Split by...
    ...case study

    View Slide

  157. Chris J. Wright - [email protected]
    Results
    • Median of repetitions
    • Lower-is-better metric
    • Split by...
    ...case study
    ...DBMS

    View Slide

  158. Chris J. Wright - [email protected]
    Results
    • Median of repetitions
    • Lower-is-better metric
    • Split by...
    ...case study
    ...DBMS
    • Full details in paper (including statistics)

    View Slide

  159. Chris J. Wright - [email protected]
    0
    1000
    2000
    3000
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Postgres – Cloc
    Original Full Minimal Up-Front Just-in-Time

    View Slide

  160. Chris J. Wright - [email protected]
    0
    1000
    2000
    3000
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Postgres – Cloc
    ~3.27s
    Original Full Minimal Up-Front Just-in-Time

    View Slide

  161. Chris J. Wright - [email protected]
    0
    1000
    2000
    3000
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Postgres – Cloc
    ~3.27s
    ~2.08s
    Original Full Minimal Up-Front Just-in-Time

    View Slide

  162. Chris J. Wright - [email protected]
    0
    50000
    100000
    150000
    200000
    250000
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Postgres – RiskIt
    Original Full Minimal Up-Front Just-in-Time

    View Slide

  163. Chris J. Wright - [email protected]
    0
    50000
    100000
    150000
    200000
    250000
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Postgres – RiskIt
    ~238s
    Original Full Minimal Up-Front Just-in-Time

    View Slide

  164. Chris J. Wright - [email protected]
    0
    50000
    100000
    150000
    200000
    250000
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Postgres – RiskIt
    ~238s ~225s
    Original Full Minimal Up-Front Just-in-Time

    View Slide

  165. Chris J. Wright - [email protected]
    0
    50000
    100000
    150000
    200000
    250000
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    Up−Front Schemata
    Just−in−Time Schemata
    Postgres – RiskIt
    ~238s ~225s
    ~23s
    Original Full Minimal Up-Front Just-in-Time

    View Slide

  166. Chris J. Wright - [email protected]
    Results – Postgres

    View Slide

  167. Chris J. Wright - [email protected]
    Results – Postgres
    ‘Full Schemata’

    View Slide

  168. Chris J. Wright - [email protected]
    Results – Postgres
    ‘Full Schemata’
    Improvement decreases
    with larger schemas

    View Slide

  169. Chris J. Wright - [email protected]
    Results – Postgres
    ‘Minimal Schemata’
    ‘Full Schemata’
    Improvement decreases
    with larger schemas

    View Slide

  170. Chris J. Wright - [email protected]
    Results – Postgres
    ‘Minimal Schemata’
    ‘Full Schemata’
    Improvement decreases
    with larger schemas
    Consistently faster,
    scales very well

    View Slide

  171. Chris J. Wright - [email protected]
    Results – Postgres
    ‘Just-in-Time Schemata’
    ‘Minimal Schemata’
    ‘Full Schemata’
    Improvement decreases
    with larger schemas
    Consistently faster,
    scales very well

    View Slide

  172. Chris J. Wright - [email protected]
    Results – Postgres
    ‘Just-in-Time Schemata’
    Consistently faster,
    scales very well
    ‘Minimal Schemata’
    ‘Full Schemata’
    Improvement decreases
    with larger schemas
    Consistently faster,
    scales very well

    View Slide

  173. Chris J. Wright - [email protected]
    Results – Postgres
    ‘Up-Front Schemata’
    ‘Just-in-Time Schemata’
    Consistently faster,
    scales very well
    ‘Minimal Schemata’
    ‘Full Schemata’
    Improvement decreases
    with larger schemas
    Consistently faster,
    scales very well

    View Slide

  174. Chris J. Wright - [email protected]
    Results – Postgres
    ‘Up-Front Schemata’
    ‘Just-in-Time Schemata’
    Consistently faster,
    scales very well
    Improvement decreases
    with larger schemas
    ‘Minimal Schemata’
    ‘Full Schemata’
    Improvement decreases
    with larger schemas
    Consistently faster,
    scales very well

    View Slide

  175. Chris J. Wright - [email protected]
    Results – Postgres
    ‘Up-Front Schemata’
    ‘Just-in-Time Schemata’
    Consistently faster,
    scales very well
    Improvement decreases
    with larger schemas
    ‘Minimal Schemata’
    ‘Full Schemata’
    Improvement decreases
    with larger schemas
    Consistently faster,
    scales very well

    View Slide

  176. Chris J. Wright - [email protected]
    0
    5000
    10000
    15000
    Original
    Full Schemata
    Minimal Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    SQLite – Cloc
    Original Full Minimal

    View Slide

  177. Chris J. Wright - [email protected]
    0
    5000
    10000
    15000
    Original
    Full Schemata
    Minimal Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    SQLite – Cloc
    ~18.0s
    Original Full Minimal

    View Slide

  178. Chris J. Wright - [email protected]
    0
    5000
    10000
    15000
    Original
    Full Schemata
    Minimal Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    SQLite – Cloc
    ~18.0s ~18.7s
    Original Full Minimal

    View Slide

  179. Chris J. Wright - [email protected]
    0
    5000
    10000
    15000
    Original
    Full Schemata
    Minimal Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    SQLite – Cloc
    ~18.0s ~18.7s
    ~8.28s
    Original Full Minimal

    View Slide

  180. Chris J. Wright - [email protected]
    0
    500000
    1000000
    1500000
    2000000
    Original
    Full Schemata
    Minimal Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    SQLite – RiskIt
    Original Full Minimal

    View Slide

  181. Chris J. Wright - [email protected]
    0
    500000
    1000000
    1500000
    2000000
    Original
    Full Schemata
    Minimal Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    SQLite – RiskIt
    ~20.2 min
    Original Full Minimal

    View Slide

  182. Chris J. Wright - [email protected]
    0
    500000
    1000000
    1500000
    2000000
    Original
    Full Schemata
    Minimal Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    SQLite – RiskIt
    ~20.2 min
    ~31.8 min
    Original Full Minimal

    View Slide

  183. Chris J. Wright - [email protected]
    0
    500000
    1000000
    1500000
    2000000
    Original
    Full Schemata
    Minimal Schemata
    Mutation Analysis Technique
    Mutation Analysis Time (ms)
    Original
    Full Schemata
    Minimal Schemata
    SQLite – RiskIt
    ~20.2 min
    ~31.8 min
    ~2.5 min
    Original Full Minimal

    View Slide

  184. Chris J. Wright - [email protected]
    Results – SQLite

    View Slide

  185. Chris J. Wright - [email protected]
    Results – SQLite
    ‘Full Schemata’

    View Slide

  186. Chris J. Wright - [email protected]
    Results – SQLite
    ‘Full Schemata’
    Increasingly worsened
    with larger schemas

    View Slide

  187. Chris J. Wright - [email protected]
    Results – SQLite
    ‘Minimal Schemata’
    ‘Full Schemata’
    Increasingly worsened
    with larger schemas

    View Slide

  188. Chris J. Wright - [email protected]
    Results – SQLite
    ‘Minimal Schemata’
    ‘Full Schemata’
    Increasingly worsened
    with larger schemas
    Consistently faster,
    scales very well

    View Slide

  189. Chris J. Wright - [email protected]
    Results – SQLite
    ‘Minimal Schemata’
    ‘Full Schemata’
    Increasingly worsened
    with larger schemas
    Consistently faster,
    scales very well

    View Slide

  190. Chris J. Wright - [email protected]
    Future Work & Limitations

    View Slide

  191. Chris J. Wright - [email protected]
    Future Work & Limitations
    Case Studies

    View Slide

  192. Chris J. Wright - [email protected]
    Future Work & Limitations
    Case Studies DBMSs

    View Slide

  193. Chris J. Wright - [email protected]
    Future Work & Limitations
    Detailed
    Timing
    Case Studies DBMSs

    View Slide

  194. Chris J. Wright - [email protected]
    Future Work & Limitations
    Approaches
    Detailed
    Timing
    Case Studies DBMSs

    View Slide

  195. Chris J. Wright - [email protected]
    Future Work & Limitations
    Approaches
    Detailed
    Timing
    Case Studies DBMSs
    Parallel
    Configurations

    View Slide

  196. Chris J. Wright - [email protected]
    Future Work & Limitations
    Test Suite
    Approaches
    Detailed
    Timing
    Case Studies DBMSs
    Parallel
    Configurations

    View Slide

  197. Chris J. Wright - [email protected]
    Test Suite Generation

    View Slide

  198. Chris J. Wright - [email protected]
    Test Suite Generation
    • SchemaAnalyst tool

    View Slide

  199. Chris J. Wright - [email protected]
    Test Suite Generation
    • SchemaAnalyst tool
    • Gregory Kapfhammer

    View Slide

  200. Chris J. Wright - [email protected]
    Test Suite Generation
    • SchemaAnalyst tool
    • Gregory Kapfhammer
    • Tuesday 11:00am, Research & Industrial Track

    View Slide

  201. Chris J. Wright - [email protected]
    Conclusions

    View Slide

  202. Chris J. Wright - [email protected]
    Conclusions
    • Mutant Schemata and Parallelisation can
    both reduce the cost of mutation analysis

    View Slide

  203. Chris J. Wright - [email protected]
    Conclusions
    • Mutant Schemata and Parallelisation can
    both reduce the cost of mutation analysis
    • The ‘Minimal Schemata’ approach...

    View Slide

  204. Chris J. Wright - [email protected]
    Conclusions
    • Mutant Schemata and Parallelisation can
    both reduce the cost of mutation analysis
    • The ‘Minimal Schemata’ approach...
    ...consistently faster than original

    View Slide

  205. Chris J. Wright - [email protected]
    Conclusions
    • Mutant Schemata and Parallelisation can
    both reduce the cost of mutation analysis
    • The ‘Minimal Schemata’ approach...
    ...consistently faster than original
    ...gives a reduction of up to 10x

    View Slide

  206. Chris J. Wright - [email protected]
    Conclusions
    • Mutant Schemata and Parallelisation can
    both reduce the cost of mutation analysis
    • The ‘Minimal Schemata’ approach...
    ...consistently faster than original
    ...gives a reduction of up to 10x
    ...scales very well (for our case studies)

    View Slide

  207. Chris J. Wright - [email protected]
    Conclusions
    • Mutant Schemata and Parallelisation can
    both reduce the cost of mutation analysis
    • The ‘Minimal Schemata’ approach...
    ...consistently faster than original
    ...gives a reduction of up to 10x
    ...scales very well (for our case studies)
    ...doesn’t require parallel DBMS access

    View Slide

  208. Chris J. Wright - [email protected]
    Conclusions
    • Mutant Schemata and Parallelisation can
    both reduce the cost of mutation analysis
    • The ‘Minimal Schemata’ approach...
    ...consistently faster than original
    ...gives a reduction of up to 10x
    ...scales very well (for our case studies)
    ...doesn’t require parallel DBMS access
    • Website: http://schemaanalyst.org/

    View Slide

  209. Chris J. Wright - [email protected]
    Conclusions
    • Mutant Schemata and Parallelisation can
    both reduce the cost of mutation analysis
    • The ‘Minimal Schemata’ approach...
    ...consistently faster than original
    ...gives a reduction of up to 10x
    ...scales very well (for our case studies)
    ...doesn’t require parallel DBMS access
    • Website: http://schemaanalyst.org/

    View Slide